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A ‘resolution’ of the interior singularity of the spherically symmetric Schwarzschild
solution of the Einstein equations for the gravitational field of a point-particle is carried
out entirely and solely by finitistic and algebraic means. To this end, the background dif-
ferential spacetime manifold and, in extenso, Differential Calculus-free purely algebraic
(:sheaf-theoretic) conceptual and technical machinery of Abstract Differential Geome-
try (ADG) is employed. As in previous works [Mallios, A. and Raptis, I. (2001). Finitary
spacetime sheaves of quantum causal sets: Curving quantum causality. International
Journal of Theoretical Physics, 40, 1885 [gr-qc/0102097]; Mallios, A. and Raptis,
I. (2002). Finitary Čech-de Rham cohomology. International Journal of Theoretical
Physics, 41, 1857 [gr-qc/0110033]; Mallios, A. and Raptis, I. (2003). Finitary, causal
and quantal vacuum Einstein gravity. International Journal of Theoretical Physics 42,
1479 [gr-qc/0209048]], which this paper continues, the starting point for the present
application of ADG is Sorkin’s finitary (:locally finite) poset (:partially ordered set)
substitutes of continuous manifolds in their Gel’fand-dual picture in terms of discrete
differential incidence algebras and the finitary spacetime sheaves thereof. It is shown
that the Einstein equations hold not only at the finitary poset level of ‘discrete events,’
but also at a suitable ‘classical spacetime continuum limit’ of the said finitary sheaves
and the associated differential triads that they define ADG-theoretically. The upshot of
this is two-fold: On the one hand, the field equations are seen to hold when only finitely
many events or ‘degrees of freedom’ of the gravitational field are involved, so that no
infinity or uncontrollable divergence of the latter arises at all in our inherently finitistic-
algebraic scenario. On the other hand, the law of gravity—still modelled in ADG by a
differential equation proper—does not break down in any (differential geometric) sense
in the vicinity of the locus of the point-mass as it is traditionally maintained in the
usual manifold-based analysis of spacetime singularities in General Relativity (GR). At
the end, some brief remarks are made on the potential import of ADG-theoretic ideas
in developing a genuinely background-independent Quantum Gravity (QG). A brief

1 Algebra and Geometry Section, Department of Mathematics, University of Athens, Panepistimioupo-
lis, Athens 157 84, Greece.

2 Theoretical Physics Group, Blackett Laboratory, Imperial College of Science, Technology and
Medicine, Prince Consort Road, South Kensington, London SW7 2BZ, UK; e-mail: i.raptis@ic.ac.uk.

85
0020-7748/06/0100-0085/0 C© 2006 Springer Science+Business Media, Inc.



86 Raptis

comparison between the ‘resolution’ proposed here and a recent resolution of the inner
Schwarzschild singularity by Loop QG means concludes the paper.
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1. PROLEGOMENA: INTRODUCTION CUM
PHYSICAL MOTIVATION

It is widely maintained today that, given certain broad assumptions and
generic conditions, General Relativity (GR) ‘predicts’ singularities—loci in the
spacetime continuum where the gravitational field grows uncontrollably without
bound and, ultimately, the Einstein equations that it obeys ‘break down’ in one
way or another. At the same time however, few physicists would disagree that the
main culprit for these pathologies and their associated unphysical infinities is our
model of spacetime as a pointed, C∞-smooth (:differential) manifold.3

Granted that the said anomalies and divergences are physically unacceptable,
but at the same time that the whole conceptual edifice and technical machinery
of Classical Differential Geometry (CDG)—the mathematical language in which
GR is traditionally formulated4 —vitally depends on a base smooth manifold, the
physicist appears to be impaled on the horns of a dilemma. On the one hand, she
wishes to do away with singularities and their physically meaningless infinities,
while on the other, she wishes to retain (or anyway, she is reluctant to readily
abandon) the picture of a physical law (here, the law of gravity) as a differential
equation proper, if anything in order for the theory still to be able to accommodate
some notion of locality—be it differential locality.5

In other words, the tension may be expressed as follows: How can one get
rid of the spacetime continuum with its ‘inherent’ singularities, but still be able to
apply somehow differential geometric ideas to theoretical physics? Especially in
GR, this friction manifests itself in the glaring conflict between the Principle of
General Covariance (PGC) and the fruitless attempts so far at defining precisely
what is a singularity in the theory (Geroch, 1968; Hawking and Ellis, 1973;
Clarke, 1993; Rendall, 2005). For if one does away with the differential manifold

3 In the present paper, we tacitly identify the physicists’ intuitive term ‘spacetime continuum’ with the
mathematicians’ notion of a (finite-dimensional) ‘locally Euclidean space’—i.e., a manifold, looking
locally like R

n and carrying the usual topological (C0) and differential (C∞) structure.
4 In the original formulation of GR by Einstein, CDG pertains to the pseudo-Riemannian geometry of

smooth manifolds.
5 That is, the idea that dynamical gravitational field actions connect infinitesimally separated events, or

equivalently, that events causally influence others in their ‘infinitesimal neighborhood’ (differential
locality or local causality in the point-set manifold of events).
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model for spacetime, and, as a result, the whole of the CDG based on it, one
has also got to abandon the by now standard mathematical representation of
the PGC by Diff(M)—the diffeomorphism ‘symmetry’ group of automorphisms
of the underlying smooth continuum M . No matter how easily the theoretical
physicist may be convinced to abandon the mathematical (and quite a priori!)
assumption of the spacetime continuum if the nonsensical singularities have to go
with it, she will not be as easily prepared to sacrifice the pillar on which GR, as
a physical theory, stands—the PGC. Otherwise, at least she is forced to look for
an alternative mathematical expression for it—one that, unlike the traditional one
involving Diff(M), is not dictated by the smooth background manifold.

In order to appreciate how formidable this dilemma-cum-impasse is, one has
to consider that, arguably, the only way we actually know how to do differential
geometry is via a base manifold (i.e., CDG); albeit, in doing CDG we have to put
up with the singularities that are built into M . Let it be stressed here that we tacitly
assume that a differential manifold M is nothing else but the algebra C∞(M)
of infinitely differentiable ‘coordinate’ functions labelling its points (Gel’fand
duality/spectral theory) (Mallios and Raptis, 2002, 2003, 2004). Thus, when we say
that singularities are ‘inherent’ or built into M , we mean that they are singularities
of some smooth function in C∞(M).6

Of course, the theoretical physicist has time and again proven to be resourceful
and inventive when confronted with such apparently insurmountable obstacles: For
example, in a single stroke she may throw away the manifold picture of spacetime
altogether7 and opt for a ‘discrete,’ finitistic model of spacetime and gravity.
For, in any case, the general feeling nowadays is that very strong gravitational
fields—probing smaller and smaller spacetime scales—such as those developing
in the vicinity of a black hole, whose horizon is usually regarded as concealing
a singularity in its core (e.g., the Schwarzschild black hole), only a quantum
theory of gravity will be able to describe consistently (conceptually) and finitely
(‘calculationally’).8 The implicit rationale (or at least the hope) here is that as
the process of quantization (i.e., the development of QFT) somewhat alleviated
the singularities and associated infinities of the classical field theories of matter
(e.g., QED relative to classical Maxwellian electrodynamics), in the same way

6 For example, the algebra of coordinates in which gµν—the principal dynamical variable in GR,
whose components represent the 10 gravitational potentials—takes its values, is C∞(M). That is, the
said decade of potentials are smooth functions on M , and precisely because of this one says that the
metric tensor gµν is a smooth field on M—an ⊗C∞(M)-tensor.

7 Albeit, with a heavy heart, since if M has to go, so will CDG, so the continuous field theory based on
it—a theory which has served her so well in the past: From the ever so successful (macroscopically)
relativistic field theory of gravity (GR), to the equally if not more successful (microscopically) flat
quantum field theories (QFT) of matter.

8 Notwithstanding that singularities are normally regarded as a problem of GR per se (i.e., of classical
gravity), long before quantization becomes an issue.
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a quantization of GR may heal the singularities and related pathologies of the
classical theory (even though the QF theoretic formalism still essentially relies
on a background spacetime continuum, be it flat Minkowski space). There is
also an even more ‘iconoclastic’ stance maintaining that both GR and quantum
theory have to be modified somehow to achieve a fruitful unison of the two into
a consistent QG, which will then be able to shed more light on, if not resolve
completely, the problem of singularities in GR (Penrose, 2003).

In other words, it is generally accepted today that GR appears to be out
of its depth when trying to describe the gravitational field right at its source
(e.g., the inner Schwarzschild singularity of the gravitational field of a point-
particle (Finkelstein, 1958)), while at the same time, below the so-called Planck
time-length—or equivalently, in dynamical processes (interactions) of very high
energy-momentum transfer where quantum gravitational effects are supposed to
become important—the classical spacetime continuum of macroscopic physics
should give way to something more ‘reticular’ and ‘quantal.’

In summa, on the face of the aforementioned impasse and the subsequent
hopes that QG could (or maybe, should?) remove singularities and their associated
infinities in the end, there goes the spacetime manifold and, inevitably, down
comes the whole CDG-edifice that is supported by it. The expression ‘throw the
baby away together with the bath-water’ is perhaps suitable here, with the ever
so valuable baby representing differential geometric concepts and constructions,
while the epicurical aqueous ‘bathing medium’ standing for the ‘ambient’ base
manifold, which apparently (but only apparently, as we will see in the sequel)
vitally supports those CDG concepts and constructions. As a matter of fact, in the
past, QG researchers have gone as far as to claim that

. . . at the Planck-length scale, differential geometry is simply incompatible with quan-
tum theory . . . [so that] one will not be able to use differential geometry in the true
quantum-gravity theory . . . ” (Isham, 1991)

On the other hand, there is the recently developed Abstract Differential
Geometry (ADG) (Mallios, 1998a,b, 2005b), a theory and method of doing differ-
ential geometry that does not employ at all a background geometrical C∞-smooth
manifold, while at the same time it still retains, by using purely algebraico-
categorical (:sheaf-theoretic) means, all the differential geometric conceptual
panoply and technical machinery of the manifold-based CDG. This differen-
tial geometric mechanism of CDG, ADG has taught us both in theory and in
numerous applications so far, is in essence of a purely algebraic character and
quite independent of a base geometrical continuum, much in the relational way
Leibniz had envisioned that Calculus should be formulated and practiced
(Thompson, 2001). However, that ‘fundamental algebraicity’ is masked by the
‘geometric mantle’ of the background locally Euclidean space(time) M , which
intervenes in our differential geometric calculations (i.e., in our Differential
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Calculus!) in the guise of the smooth coordinates of (the points of) M in C∞(M).
Thus, CDG is a background space(time)-dependent conception and method of
differential geometry that could be coined, in contradistinction to the base mani-
foldless Leibnizian ADG, Cartesian–Newtonian [In a significantly modified and
expanded version of the e-arXiv posted paper; Mallios (2003, 2004b); Mallios and
Raptis (2004)].

As a result, the relevance of ADG regarding the dilemma-cum-impasse posed
above is that one not only is not forced to throw away the baby (:the differential
mechanism) together with the bath-water (:the base manifold), but also that one
can exercise that essentially algebraic differential geometric machinery in the
very presence of singularities of any kind, literally as if the singularities were not
there (Mallios and Rosinger, 1999; Mallios, 2001; Mallios and Rosinger, 2001,
2002; Mallios, 2002, 2003, 2005a; Mallios and Raptis, 2004). As it happens, ADG
passes through the horns of the aforementioned dilemma by doing away with one
horn (i.e., the base spacetime manifold), while showing at the same time that the
gravitational field law—which is still algebraico-categorically represented by a
base manifoldless version of the differential equations of Einstein—holds over,
and by no means breaks down at, singularities of any sort.9 Consequently, the
latter are not interpreted as being insuperable obstacles to, let alone break down
points of, ‘differentiability’ as the manifold ‘mediated’ CDG (and consequently,
the GR based on it) has so far (mis)led us to believe (Hawking and Ellis, 1973;
Clarke, 1993; Mallios and Raptis, 2004).

In the present paper, we put ADG further to the test by applying it towards
the ‘resolution’ (or better, as we shall see in the sequel, towards the total evasion
or bypass) of the interior singularity of the spherically symmetric Schwarzschild
solution of the (vacuum) Einstein equations for the gravitational field surrounding
a point-particle of mass m. Classically (i.e., from the viewpoint of the manifold-
based CDG and GR), this singularity, unlike the exterior one located at the so-called
Schwarzschild black hole horizon-radius distance r = 2m from the point-mass
which has proven to be merely a ‘virtual,’ so-called coordinate one (Finkelstein,
1958), is thought of as being a ‘real,’ ‘genuine’ singularity as it resists any analytic
(Cω), smooth (C∞), or even continuous (C0), extension of the spacetime manifold
M past it (Finkelstein, 1958; Hawking and Ellis, 1973; Clarke, 1993; Mallios and
Raptis, 2004). In turn, the differential field equations of Einstein are thought of

9 That is to say, not only in the presence of the usual, ‘classical’ as it were, singularities which are
built into the smooth coordinates C∞(M) of the pointed differential manifold M , but also with
respect to more general, far more numerous and ‘robust’ ones, such as the so-called ‘spacetime
foam dense singularities’ teeming Rosinger’s differential algebras of generalized functions (non-
linear distributions). These are functions that are defined on finite-dimensional Euclidean and locally
Euclidean (manifold) space(time)s, and include not only the smooth functions in C∞(M), but also
more general, ‘smeared out’ function(al)s, such as the linear distributions of Schwartz (Mallios and
Rosinger, 1999, 2001; Mallios, 2001; Mallios and Rosinger, 2002; Mallios and Raptis, 2004).
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as breaking down at the locus of the point-mass in the sense that they are no
longer regarded as a valid description of gravitational dynamics right at the source
of the gravitational field. As noted earlier, the general consensus nowadays is
that only a QG will be able to describe gravitational dynamics for very strong,
divergent from the pointed-continuum perspective and when treated with the usual
analytic means of CDG (Calculus), gravitational fields near their massive (energy-
momentum) sources. Even more dramatically and drastically, it is intuited that the
said ‘infinitistic’ manifold, by evoking a minimal, fundamental spacetime length-
duration (�P -tP ), should be replaced by a ‘granular’ and ‘quantal’ structure that
correctly represents the ‘true’ spacetime geometry in the quantum deep (Ashtekar,
2003).

In glaring contrast to the anticipations and hopes above, in this paper we will
show by using the purely algebraic (:sheaf-theoretic), manifold- and in extenso
Calculus-free ADG-theoretic means, that the (vacuum) Einstein equations not only
do not break down in any sense, as differential equations proper, in the immediate
vicinity of, or even right at, the Schwarzschild point-particle, but also that they
hold both at the ‘discrete’ and at the ‘continuous’ background space(time) level of
description of gravity. To this end, Sorkin’s finitary poset substitutes of continuous
manifolds (Sorkin, 1991), in their Gel’fand-dual algebraic representation in terms
of ‘discrete differential incidence algebras’ (Raptis and Zapatrin, 2000, 2001)
and the finitary spacetime sheaves (finsheaves) thereof (Raptis, 2000b; Mallios
and Raptis, 2001, 2002), are used à la ADG to show that the law of gravity
(‘originating’ from the Schwarzschild point-mass) holds both at the ‘reticular-
quantal’ level of description of spacetime (Mallios and Raptis, 2003) and in a
(suitably defined) ‘classical,’ ‘continuum’ (inverse) limit of (a projective system
of) the said finsheaves and the finitary differential triads that the latter comprise
(Mallios and Raptis, 2002, 2003). We infer what has been already anticipated
numerous times in the past trilogy (Mallios and Raptis, 2001, 2002, 2003) of
applications of ADG to a (f)initary, (c)ausal, and (q)uantal (abbreviated ‘fcq’)
version of Lorentzian gravity, namely, that ADG allows us to develop a genuinely
background spacetime-independent, purely gauge (i.e., solely connection-based)
field theory of gravity, no matter whether that base ‘spacetime’ is taken to be a
continuum or a discretum.

Ex altis viewed, the paper is organized as follows: In the next section we
review some ADG-basics from Mallios (1998a,b) that will prove to be useful in
the sequel. In Section 3, we recall from the trilogy (Mallios and Raptis, 2001,
2002, 2003) the essentials from the ADG-theoretic approach, via Sorkin’s finitary
discretizations of continuous manifolds (Sorkin, 1991), their Gel’fand-dual inci-
dence algebraic representation (Raptis and Zapatrin, 2000, 2001) and the latter’s
finsheaf-theoretic picture (Raptis, 2000b), to a f cq-version of Lorentzian vacuum
Einstein gravity. In Section 4, we bring forth from Papatriantafillou (2000, 2001,
2004, 2003, 2005), the key result from the categorical perspective on ADG, namely,
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that the category of differential triads is bicomplete—i.e., closed under both pro-
jective and inductive limits. Having that result in hand, in the following Section (5)
we present a direct ‘static’ (or ‘stationary’), ‘spatial’ (spacetime-localized) point-
resolution of the interior Schwarzschild singularity and we anticipate an alternative
‘temporal’ (time-line extended), distributional one involving the so-called space-
time foam dense singularities from Mallios and Rosinger (2001, 2002). However,
we leave the technical details of the latter for the more comprehensive treat-
ment of C∞-gravitational singularities in Mallios and Raptis (2004). The paper
concludes with a brief discussion on the possibility of developing a genuinely
background-independent QG and we compare the Schwarzschild singularity reso-
lution presented herein with similar recent efforts in the context of LQG (Modesto,
2004), passing at the same time the baton to Mallios and Raptis (2004) for a more
thorough exposition of the potential import of ADG-ideas to current QG research.

2. RUDIMENTS OF ADG

We first recall from Mallios (1998a,b) some key concepts and structures in
ADG that will prove to be useful in what follows.

2.1. K-Algebraized Spaces

In ADG, we let X be an in principle arbitrary topological space on which
a sheaf A of unital, commutative, and associative K-algebras A is erected. The
coefficient field K of the algebras may be taken to be either R or C. We tacitly
assume that the constant sheaf K ≡ C of K-scalars is canonically embedded
(injected) into A: K ↪→ A. We say that X is the base space (for the localization)
of the structure sheaf A of generalized arithmetics.10 The pair

D := (X, AX) (1)

is called a K-algebraized space.

2.2. Vector Sheaves and Differential Triads

Technically speaking, by a vector sheaf E in ADG we mean a locally free
A-module of finite rank, that is to say, a sheaf of A-modules over X that is locally
expressible as a finite power (a finite Whitney sum) of A

E |U � An|U = (A|U )n = An(U ) = A(U )n (U open in X) (2)

with An(U ) = A(U )n := �(U, A) the local sections of A.

10 The terms ‘coefficients’ or ‘coordinates’ will be used interchangeably with the term ‘arithmetics’ in
the sequel.
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We also assume that the dual of E
E∗ := �(≡ �1) = HomA(E, A) (3)

is the ADG-theoretic analogue of the sheaf of modules of smooth 1-forms in the
classical, manifold-based theory (CDG). It must be emphasized here that CDG is
‘recovered’ from ADG when one assumes C∞

X for structure sheaf A of coordinates
in the theory, which in turn means that X is a smooth manifold (Gel’fand duality
and spectral theory).

Now, having defined Ds, Es and their duals �, we are in a position to define
the fundamental notion in ADG, that of a differential triad T. It is a triplet

T := (AX, ∂,�1
X) (4)

consisting of a structure sheaf AX on some topological space X (i.e., a
K-algebraized space D is built into every T)11 and a K-linear Leibnizian sheaf
morphism ∂ . That is to say, ∂ is a map

∂ : A −→ �1 (5)

which is K-linear, and for every two local sections p and q in �(U, A) ≡ A(U )
(:the collection of local sections of A over U ⊂ X), the usual Leibniz rule is
observed

∂(p · q) = p · ∂(q) + q · ∂(p) (6)

2.3. A-Connections

The basic observation of ADG is that the basic differential operator ∂ in
differential geometry is the archetypical instance of an A-connection12 —albeit, a
flat connection as we shall see later.13 Thus, a general (curved) A-connection D
in ADG is an abstraction from and a generalization of the usual ∂ , defined as the
following K-linear sheaf morphism

D : E −→ �(E) ≡ E ⊗A � ∼= � ⊗A E (7)

11 For typographical economy, from now on we will omit the base space X as a subscript to the sheaves
involved.

12 In ADG, the concept of an algebraic A-connection is the fundamental one, about which the whole
theory revolves. A-connections are the raison d’être of ADG (Mallios, 1988, 1998a,b).

13 Moreover, in complete analogy to ∂ , one can then iteratively define higher order prolongations di

(i ≥ 1) of ∂ ≡ d0, which again are K-linear and Leibnizian sheaf morphisms between A-modules
�i of differential form-like entities of higher degree di : �i −→ �i+1 (A ≡ �0), satisfying at
the same time the usual nilpotency condition of the standard (exterior Cartan-de Rham-Kähler)
differential operator d: di+1 ◦ di ≡ d2 = 0 (with d2 being ‘the square of d,’ not to be confused with
the second-order prolongation of ∂).
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2.4. Curvature of A-Connections

With D at our disposal, we can define its curvature R(D) diagrammatically
as follows

(8)

for a suitable higher order extension D2 of D(≡ D1).14 It must be noted here
that, from the definition of R(D) above, it follows that the nilpotent ∂ is a flat
connection—i.e., R(∂) := d2 = 0. It is also important to observe here that, unlike
D which is only a K-sheaf morphism, its curvature R(D) is an A-morphism, that
is to say, our generalized arithmetics (coordinates) in A respect it. Equivalently,
and philologically speaking, R ‘sees through’ our generalized arithmetics (coordi-
nates) in A. On the other hand, our acts of coordinatization in A cannot ‘capture’
D, which eludes them since it is not an A-morphism (Mallios, 1998a; Mallios and
Raptis, 2002, 2003).15

2.5. Manifoldless (Pseudo)-Riemannian Geometry and Vacuum
Einstein Equations in a Nutshell

Following Mallios (1998a,b, 2001); Mallios and Raptis (2001, 2002, 2003),
we can then formulate ADG-theoretically, in a manifestly background (spacetime)
manifoldless way, all the concepts and structures of the CDG-based (pseudo)-
Riemannian geometry underlying GR such as A-valued (Lorentzian) metrics ρ,
Christoffel A-connections ∇ compatible with ρ (i.e., metric or torsionless con-
nections), the Ricci curvature EndE-valued16 ⊗A-tensor R, and its A-valued
trace-contraction—the Ricci scalar R.

The upshot of our brief résumé here of the application of ADG to GR
isxsxsxsxs that the vacuum Einstein equations read in our scheme

R(E) = 0 (9)

14 Like the higher order extensions di of ∂ ≡ d1 mentioned in the last footnote, D2 for example is a
K-linear, Leibnizian sheaf morphism between �1 and �2: D2 : �1(E) −→ �2(E). It acts locally
(i.e., section-wise), and relative to D, as follows: D2(p ⊗ q) := p ⊗ dq − q ∧Dq, (p ∈ E(U ), q ∈
�1(U ), U open in X).

15 This observation about R(D) will become important when we discuss the A-functoriality of the
ADG-theoretic formulation of (vacuum) gravitational dynamics in (9) later.

16 And recall that, locally: EndE(U ) = Mn(A)(U ).
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recalling at the same time from Mallios (2001); Mallios and Raptis (2003, 2004)
a couple of important observations pertaining to them:

1. From the ADG-theoretic viewpoint, GR is another gauge theory—in fact,
a ‘pure gauge theory’ as the only dynamical variable involved is the (cur-
vature of the) gravitational A-connection D, and no external smooth base
spacetime manifold is employed. This is in glaring contrast to both the
original (smooth) spacetime metric-based formulation of GR by Einstein
(second-order formalism) and to the recent ‘new variables’ formulation
of GR by Ashtekar (Ashtekar, 1986) (first-order formalism reminiscent
of Palatini’s metric-affine one) which, although it emphasizes the impor-
tance of the notion of connection so as to place gravity in the category
of gauge forces, it still employs a smooth background manifold, while
at the same time the (smooth) metric of the second-order formalism is
still present ‘in disguise,’ being encoded in the (smooth) vierbein field
variables. Due to these features, we coin the ADG-formulation of GR
‘half-order, pure gauge formalism.’17

2. The vacuum Einstein equations derive variationally (solely with respect
to D!) from the ADG-theoretic version of the Einstein–Hilbert action
functional EH, which is an A-valued functional on the affine space AA(E)
of the A-connections D, which in turn becomes the relevant configuration
space in our theory of gravity.

3. Since there is no external smooth spacetime continuum involved in the
ADG-version of GR, the principle of general covariance (PGC) of the
usual manifold-based theory is not expressed via Diff(M) as usual,
but via AutE—the (group sheaf of) automorphisms (dynamical self-
transmutations) of the gravitational field itself. Here one might wish to
recall that in ADG the term field pertains to the pair (E,D), with E
the (geometric) representation (or carrier) space of the (algebraic) con-
nection field D (Mallios, 1998a,b; Mallios and Raptis, 2003, 2004). In
technical jargon, E is the associated (representation) sheaf of the princi-
pal sheaf AutE of field automorphisms (Vassiliou, 1994, 1999, 2000,
2003). Moreover, since E is by definition locally isomorphic to An,
AutE(U ) := (EndE(U ))• ≡ (Mn(A))•. This is an autonomous concep-
tion of covariance, pertaining directly to the gravitational field ‘in-itself,’

17 ‘Half-order,’ because only D, and not gµν (second-order) or ea
µ (first-order), is engaged in the

dynamics (and in the first-order formalism there are two basic variables engaged in the dynamics:
The C∞-connections and the smooth comoving frame-tetrads). ‘Pure gauge,’ because there is no
‘external’ spacetime (manifold) involved—only ‘internal,’ gauge ‘degrees of freedom’ associated
with the gravitational connection field D ‘in-itself.’ In the concluding section, we will return to
comment further on this virtue of the ADG-formulation of gravity and its implications for developing
a genuinely background-independent QG.
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without reference to an external spacetime manifold, which we have else-
where coined ‘synvariance.’

In connection with our remarks above about gravity as a ‘pure gauge
theory’ à la ADG, no external spacetime (manifold) symmetries in the
guise of Diff(M) appear in our theory—only the ‘internal,’ gauge ones
AutE of the field (E,D) ‘in-itself’ are involved. In fact, the distinction
external/internal symmetries loses its meaning in our ADG-perspective
on gravity. Of course, assuming C∞

X for structure sheaf—i.e., that X is
a differential manifold M—one may recover, if one wishes, the external
Diff(M) used in the mathematical expression of the PGC of the CDG and
smooth manifold-based GR since, by definition, AutM ≡ Diff(M). It also
follows now that the relevant configuration space is the aforementioned
affine space AA(E) of A-connections modulo the field’s dynamical self-
transmutations (‘autosymmetries’) in AutE : AA(E)/AutE .

4. Finally, closely related to the remarks about synvariance above is the is-
sue of functoriality. In the ADG perspective on GR, functoriality pertains
to the fact that the gravitational dynamics—the vacuum Einstein equa-
tions (9)—is expressed via the curvature of the connection, which is an
A-morphism—or equivalently, a ⊗A-tensor (⊗A being the homological
tensor product functor). This means that the generalized coordinates in A,
that we employ in order to ‘measure’ or ‘geometrically represent’ (and
‘localize’ in E over X) the gravitational connection field D, respect it.18

Moreover, since if any space(time) is involved at all in our scheme, then
it is regarded as being built into the A that we assume in the first place
to coordinatize (or geometrically represent) the gravitational connection
field D (on E),19 the gravitational dynamics, being A-functorial, ‘sees
through’ the said ‘spectral space(time)’ inherent in A.

Precisely in this A-functoriality lies the strength and import of ADG
vis-à-vis (gravitational) singularities, in the sense that one can ‘absorb,’
incorporate, or integrate into A singularities of any kind—ones that are
arguably more robust and numerous than the C∞-ones built into the usual
coordinate structure sheaf C∞

M of the smooth manifold—and still be able to

18 Although it must be stressed here that the connection itself, being simply a K-morphism, is not an
A-morphism or ⊗A-tensor, thus it ‘eludes’ our measurements in A. However, it is the curvature of the
connection that appears in (9), which is an A-morphism. D is a purely algebraic notion, and as such
it evades our generalized acts of measurement or ‘geometrization’ (and concomitant representation
on the associated sheaf E) of the gravitational field D, which are organized in A (Mallios and Raptis,
2003, 2004).

19 What we have in mind here is a generalized version of the notion of Gel’fand duality whereby, in
the same way that in the classical theory (CDG) one obtains a smooth manifold M as the Gel’fand
spectrum of topological algebra C∞(M) (or equivalently, from A ≡ C∞

M ) (Mallios, 1986, 1993),
one can (spectrally) extract other ‘geometrical’ base space(time)s from various different choices of
structure algebra sheaves A (indeed, by assuming ‘functional’ structure sheaves other than C∞

M ).
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show that the gravitational field equations hold and in no way break down
at their loci in X. As it were, the differential equations of Einstein hold over
and above them, in spite of their presence in the A being employed (Mallios
and Rosinger, 1999, 2001; Mallios, 2001, 2002; Mallios and Rosinger,
2002; Mallios, 2005a; Mallios and Raptis, 2004).

2.6. The Categorical Imperative of ADG

Throughout the present paper we have mentioned various category-theoretic
sounding terms, as for example the notions of sheaf morphism and functoriality.
Indeed, on the whole one can say that ADG is an algebraico-categorical scheme
for doing differential geometry (Mallios, 1998a,b), for after all, “the methods of
sheaf theory are algebraic” (Grauert and Remmert, 1984). Here, we expose briefly
some key categorical aspects of ADG as explored in great depth in Papatriantafillou
(2000, 2001, 2004, 2003, 2005).

The first thing to mention is that one can regard differential triads as objects in
a category DT—the category of differential triads (Papatriantafillou, 2000, 2005).
The arrows in DT are triad morphisms, whose definition we now readily recall
from Papatriantafillou (2000, 2003, 2005)

One lets X and Y be topological spaces, assumed to be the base spaces of
some K-algebraized spaces (X, AX) and (Y, AY ), respectively. In addition, one
lets TX = (AX, ∂X,�X) and TY = (AY , ∂Y ,�Y ) be differential triads over them.
Then, a morphism F between TX and TY is a triplet of maps F = (f, fA, f�),
enjoying the following four properties:

1. The map f : X −→ Y is continuous;
2. The map fA : AY −→ f∗(AX) is a morphism of sheaves of K-algebras

over Y preserving the respective algebras’ unit elements (i.e., fA(1) =
1);20 and the following categorical diagram is obeyed:

20 In the expression for fA above, f∗ is the push-out along the continuous f , a map which carries
each element of a differential triad into a like element in the sense that, for any triad T, f∗(T) :=
(f∗(A), f∗(∂), f∗(�)) is also a differential triad—the one ‘induced’ by f (Papatriantafillou, 2003,
2004); whence, term-wise for our triads TX and TY above (and omitting the base topological space
subscripts): f∗(A) := (f∗(A)(U ) := Af −1(U )), (U ⊆ Y open) is a sheaf of unital, abelian, associative
K-algebras over Y , f∗(�) := (f∗(�)(U ) := �f −1(U )), (U ⊆ Y open) a sheaf of f∗(A)-modules (of
first-order differential form-like entities), and f∗(∂) := (f∗(∂)(U ) := ∂f −1(U )), (U ⊆ Y open) an
induced K-linear, Leibnizian sheaf morphism (Papatriantafillou, 2003).
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3. The map f� : �Y −→ f∗(�X), as noted in the last footnote, is a morphism
of sheaves of K-vector spaces over Y , with f�(αω) = fA(α)f�(ω), ∀α ∈
AY , ω ∈ �Y ; and finally,

4. with respect to the C ≡ K-sheaf morphism (viz. flat connection) ∂ in the
respective triads, and as it has also been alluded to in the last footnote, the
following diagram is commutative:

which reads: f� ◦ ∂Y = f∗(∂X) ◦ fA.

In summa, DT is a category having Ts for objects and Fs for arrows. Let it be
noted here that in the past it has been amply observed that differential triads are
generalizations of differential manifolds. Indeed, the entire differential structure of
a C∞-smooth manifold M is encoded in the classical differential triad T∞ having
as A the sheaf of germs of local (K ≡ R-valued) C∞-functions on M , as � the usual
sheaf of germs of local C∞-differential 1-forms (i.e., � ≡ �∞(T ∗M)), and one can
identify ∂ with the usual (exterior) derivative d: ∂ ≡ d : A −→ � : α ∈ A �→
∂(α) := dα ∈ �. It must be also stressed that T∞ is only a particular instance
of the general (abstract notion of) differential triad, which, as noted earlier, is
able to accommodate algebraized spaces (and differentials ∂ on them) other than
the classical one D∞ = (M, C∞

M ) (and ∂ ≡ d)—i.e., algebraized spaces hosting
structure sheaves other than C∞

X , and possibly non-functional (of course, as long
as these generalized arithmetics provide one with the fertile ground on which to
define a ∂ or D à la (5) or (7), and thus to develop differential geometric ideas
with them).

But let us discuss a bit more this categorical versatility of the differential
triads of ADG compared to the ‘rigidity’ and associated shortcomings of (the
category of) smooth manifolds.

2.7. Brief Discussion of the Categorical Versatility of ADG

The categorical ‘versatility’ and ‘flexibility’ of ADG, compared to the ‘crys-
talline rigidity’ of the manifold-based CDG, may be summarized by outlining the
following shortcomings ofMan—the category of (finite-dimensional) differential
(C∞-smooth) manifolds—relative to DT:

1. Man has no initial or final structures. That is, one cannot pull-back or
push-out a smooth atlas by a continuous map.
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2. The quotient space of a manifold by an (arbitrary) equivalence relation is
not a manifold.

3. Similarly, an arbitrary subset of a manifold is not a manifold. In other
words, Man has no canonical subobjects.

4. In general, Man is not closed under inductive (direct) or projective
(inverse) limits.21 Another way to say this is that Man is not bicomplete
(i.e., complete and co-complete).

5. Generally, there are no well defined categorical products and co-products
in Man.

As Papatriantafillou has shown in a long series of thorough investigations
(Papatriantafillou, 2000, 2001, 2004, 2003, 2005), DT not only does not suf-
fer from such (differential geometric) maladies, but also goes all the way towards
healing or bypassing them completely. Thus, from a mathematical point of view
alone, theoretical physics’ applications aside, these differential geometric anoma-
lies of Man could suffice for motivating the development of ADG—in fact, they
could be regarded as the raison d’être et de faire of ADG. In particular, and of spe-
cial importance to the present paper as we shall see in the sequel, Papatriantafillou
has shown in connection with the differential manifolds’ deficiencies 1, 2, and 4
above, that in DT:

• And we quote, “the differential mechanism induced by a differential triad
is transferred backwards and forward by any continuous map f . The initial
and final structures thus obtained satisfy appropriate universal conditions
that turn the continuous map f into a differentiable map.” (Papatriantafil-
lou, 2004, 2003). To recapitulate in a nutshell this result, given a con-
tinuous map f : X −→ Y , with X the base space of a differential triad
TX, Papatriantafillou showed that f pushes forward the (essentially alge-
braic) differential mechanism of TX, so that a new and unique differential
triad—one that satisfies a universal mapping condition (Papatriantafillou,
2003)—is defined on Y , so that in the process, f becomes differentiable.
The relevant theorem,22 which uses some ideas already mentioned en pas-
sant in footnote 18 before, can be stated as follows:23

Theorem: Let TX = (AX, ∂X,�X) ∈ DTX,24 and f : X −→ Y con-
tinuous. When Y inherits f∗(TX) := (f∗(AX), f∗(∂X), f∗(�X)) from the
push-out f∗ of f , then there is a morphism of differential triads F =

21 In category-theoretic jargon, projective (inverse) limits are known as ‘categorical limits,’ while
inductive (direct) ones as ‘categorical colimits.’

22 Theorem in Papatriantafillou (2004).
23 For the corresponding detailed proof, the reader is referred to Papatriantafillou (2004).
24 Plainly, DTX is the subcategory of DT consisting of all differential triads and triad morphisms

with common base topological space X.
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(f, fA, f�) : TX −→ f∗(TX) (∈ DT)—i.e., f becomes differentiable.
Moreover, the pushed-forward triad f∗(TX) satisfies the following univer-
sal (composition) property (Papatriantafillou, 2003): given a triad TY =
(AY , ∂Y ,�Y ) ∈ DTY , and a morphism F̃ := (f, f̃A, f̃�) : TX −→ TY ,
there is a unique morphism (idY , gA, g�) : f∗(TX) −→ TY such that
F̃ = (idY , gA, g�) ◦ F .

Accordingly, the ‘dual’ (converse) scenario involving f ’s pull-back
action f ∗, when now the range of f is a differential triad TY on
Y while X (f ’s domain) is simply a topological space not being en-
dowed a priori with a differential (triad) structure, f ∗ too can be seen
to transfer (induce) on X the differential mechanism encoded in TY ,
thus rendering X a differential (not just a topological) space and in
the process promoting f to a differentiable (not just a continuous) map
(Papatriantafillou, 2004).

Of great mathematical interest is that these results may serve as the
starting point for research into what one might call the ‘differential geome-
try of topological spaces,’ and they depict some sort of ‘Calculus-reversal,’
since in the usual theory, ‘differentiability implies continuity,’ while here
in some sense ‘continuity (i.e., topology, plus algebraic structure—e.g.,
the employment of a topological vector space structure) entails differ-
entiability.’ Indeed, differentiability (i.e., the ability to define a deriva-
tive/differential operator) is a topologico-algebraic notion—one that is
secured in the manifold-based CDG exactly because C∞(M) is a (non-
normable) topological algebra (Mallios and Raptis, 2003, 2004).

• When a manifold M is factored by an equivalence relation ∼, and there
happens to be a continuous map f from M to the resulting quotient space
M̃ = M/ ∼ (suitably topologized), then the result in 1 above secures that
the classical differential structure (i.e., differential triad) on M can be
pushed-forward by f∗ on the ‘moduli space’ M̃ , thus endow it with a
differential triad of its own. In the next section, we will encounter a con-
crete example of this ‘differential triad induction from a continuum to a
discretum’ having to do with Sorkin’s finitary T0-poset discretizations of
continuous (C0) manifold topologies (Sorkin, 1991).

• Finally, as Papatriantafillou (2001) has shown and in the forthcoming
monograph (Papatriantafillou, 2005), DT, unlike Man, is bicomplete—
that is to say, it is closed under projective and inductive limits. This virtue
of DT will prove to be of paramount importance on the one hand in Section
4, where we give the ‘classical continuum limit’ of f cq-differential triads
and of the f cq-version of the vacuum Einstein equations (9) holding on
them, and on the other, in Section 5, where we provide an explicit, ‘con-
structive’ evasion of the interior Schwarzschild singularity by finitistic-
algebraic means as already developed under the prism of ADG (and briefly
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summarized in the next section) in the past tetralogy (Mallios and Raptis,
2001, 2002, 2003, 2004).

3. APPLICATION OF ADG TO FINITARY, CAUSAL,
AND QUANTAL LORENTZIAN GRAVITY

For expository completeness, let us first recall from the trilogy (Mallios
and Raptis, 2001, 2002, 2003) the basic results and constructions that led us to
formulate an f cq-version of vacuum Einstein–Lorentzian gravity with the help of
ADG as these will be used in Section 5 to achieve our main goal here, namely, to
evade the inner Schwarzschild singularity purely finitistically and algebraically,
and in a ‘constructive’ fashion.

3.1. Sorkin’s Finitary Substitutes of Continuous Manifolds:
Topology (‘Continuity’) from Order

A brief history of f cq-vacuum Einstein gravity begins with Sorkin’s finitary
poset discretizations of continuous (i.e., topological, otherwise known as C0-)
manifolds.

The original idea in Sorkin (1991) is, starting with an open bounded region
X25 in a manifold M26 , to cover it with a locally finite open covering Ui . One may
recall that a cover gaugei of X is called locally finite whenever every point of
X has an open neighborhood about it that meets a finite number of the covering
sets. The index ‘i’ of the open covering will be explained shortly. Then, it was
observed that X can be replaced by a ‘discrete’27 T0-topological space Pi , having
the structure of a poset, when the following equivalence binary relation ∼ relative
to Ui is imposed on its points:

∀x, y ∈ X : x
Ui∼ y ⇔ 
(x)|Ui

= 
(y)|Ui


(x)|Ui
:= ⋂{U ∈ Ui : x ∈ U} (10)

where, clearly, 
(x)|Ui
is the ‘smallest’ open set in Ui containing x, which we

here coin ‘Sorkin’s ur-cell’ (relative to Ui).

25 By ‘bounded’ it is meant that X’s closure is compact, a space otherwise known as relatively compact.
26 Let it be stressed here that Sorkin was interested only in the standard continuous (C0-) topology of

M and no allusion to its differential (smooth) structure was made. Also, there is no harm in assuming
the usual Hausdorff (T2) topology for M , although Sorkin’s results follow even from a weaker T1

assumption.
27 From now on we will often put ‘discrete’ in single quotation marks so that one does not confuse it

with the technical term ‘discrete topological space’ referring to the (trivially Hausdorff) topology
of a totally disconnected set, all the points of which are ‘clopen’ (i.e., closed and open). Even when
these quotation marks are omitted, we do not mean the set with completely disjoint points, unless
specifically noted.
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The aforementioned T0-poset Pi , called ‘the finitary substitute of the contin-

uous topology of X,’ is then obtained as the quotient of X by
Ui∼:

Pi = X/
Ui∼ (11)

Plainly, the elements of Pi are
Ui∼-equivalence classes of X’s points, with the equiv-

alence relation being interpreted as ‘indistinguishability’ or ‘non-separability’
of X’s points by the covering sets of Ui . In other words, the ‘points’ of Pi

are Sorkin’s ur-cells 
(x)|Ui
while the points of the original space(time) X

have been substituted, ‘blown up,’ or even ‘smeared’ so to speak, by ‘larger’
open sets about them. Sorkin initially appreciated that operationally realistic
determinations (‘measurements’) of space(time) locution can be modelled after
coarse regions in the said space(time), while the continuum, the ‘sharp’ points of
which “carrying its continuous topology” (Sorkin, 1991), is an ideal theoretical
construct not corresponding to “what we actually do to produce spacetime by
our measurements” (Sorkin, 1995). Let us note en passant, the said ‘operational
pragmatism’ aside, that it is widely recognized today that the pathologies of
the spacetime continuum (e.g., the singularities of GR, or even the unphysical
infinities of QFT) are mainly due to its ideal, point-like character, or equivalently,
of the ideal point-like ‘nature’ of the matter sources (:particles) of the fields
involved. Arguably, quantum (field) theory goes some way towards alleviating the
infinities assailing its classical counterpart exactly because it sets a fundamental
limit (a regularization cut-off scale of the order of Planck) to the ideal assumption
in the classical (field) theory of infinite (spacetime) point-localization of the
relevant fields, which in turn in the quantum theory are usually modelled after
‘smeared’ and ‘blown-up’ (operator-valued) distributions.

The important interpretation of the Pis in Sorkin (1991) as discrete approxi-
mations of the topological manifold X comes from considering an inverse system
(or net)

←−
P = {Pi} of such finitary substitutes, and of continuous surjection maps

fji between them, in the sense that

Pi � Pj ⇔ Pj

fji−→ Pi (12)

where � is the act of topological refinement of the Pis28 corresponding to the
employment of more numerous and ‘smaller’ open sets (i.e., finer-and-finer Uis)
to cover X’s points.
28 Roughly, the partial order Pi � Pj , which comes from the partial ordering of the Uis in an

i-indexing net thereof and reading ‘the open covering Uj is finer than Ui ’ (or equivalently, that
the subtopology τi of X generated by finite intersections of arbitrary unions of the Us in Ui is in-
cluded in the corresponding τj : τi ⊆ τj —alias, τi is coarser than τj ), means that there is a continuous
surjection fji from the topological T0-poset Pj to Pi . The epithet ‘continuous’ for fji pertains to the
fact that one can assign a ‘natural’ topology—the so-called Sorkin lower-set topology—to the Pis,
whereby an open set is of the form O(x) := {y ∈ Pi : y −→ x}, and where −→ is the partial order
relation in Pi (with basic open sets involving the links or covering—‘immediate arrow’—relations
in Pi ). Plainly then, fji is a monotone (partial order-preserving) surjection from Pj to Pi , hence
continuous with respect to the Sorkin topology.
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Now, the central result in Sorkin (1991), one that qualifies the Pis as genuine
topological approximations of the continuum X, is that the said inverse (projective)
system

←−
P possesses an inverse (projective) limit space—call it P∞ = lim

∞←i

←−
P —

that is practically homeomorphic to the original C0-manifold that we started
with.29 The physical interpretation of the inverse limit procedure is that as one
employs finer-and-finer open sets to cover X’s points, at the limit of infinite refine-
ment of the correspondingUis, one obtains a space that is essentially topologically
indistinguishable from (or topologically equivalent—i.e., homeomorphic—to) the
original continuum X.

It must be also stressed here that in Sorkin (1991) a key attribute of the
Pis—one that enables one set up the projective system

←−P in the first place and
then take its inverse limit—is that continuous surjections fi , corresponding to

‘canonical’ projection maps from X to the
Ui∼-moduli spaces Pi (Sorkin, 1991),

enjoy a universal mapping property that can be expressed by the diagram below:

(13)

That is, fi = fji ◦ fj , and it reads that the map (canonical projection) of
X onto the finitary substitutes is universal among maps into T0-spaces, with fji

the unique map—itself an order-monotone surjection of Pi onto Pj
30 —mediating

between the continuous projections fi and fj of X onto the T0-posets Pi and Pj ,
respectively. With these ‘canonical’ continuous projections of X onto the Pis, the
said inverse system of finitary posets can be written as a collection of triplets←−P := {(Pi, fi, fji)}; while formally, the inverse limit result above can now be
cast as P∞ = lim

∞←j
fji(Pi)

homeo.� X (modulo Hausdorff reflection). This universal
mapping property of the maps between the finitary T0-posets is completely anal-
ogous to the one possessed by the differential triad morphisms (push-outs and
pull-backs) mentioned earlier. In fact, in the paragraph after the next, when we
will discuss finitary differential triads and their inverse limits, the ideas of Sorkin
and Papatriantafillou will appear to be tailor-cut for each other; albeit, with the

29 The adverb ‘practically’ above pertains to the result from Sorkin (1991) that, at the inverse limit
of

←−P , one does not actually recover the topological manifold X itself, but a non-Hausdorff space
P∞ which includes X as a dense subset. However, one can get back X from P∞, by a procedure
commonly known as Hausdorff reflection, as the set of the latter’s closed points (Kopperman and
Wilson, 1997).

30 Which, as noted earlier, corresponds to the act of topological coarse-graining Ui � Uj (i ≤ j in
some ‘refinement index-net’).
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ADG-based work of Papatriantafillou adding an important differential geometric
twist to Sorkin’s originally purely topological ideas.

3.2. Incidence Algebras of Finitary Posets: Differential Structure
(‘Smoothness’) from Algebra

In a pair of papers in collaboration with Zapatrin (Raptis and Zapatrin, 2000,
2001), a so-called incidence Rota algebra �i was associated, by Gel’fand duality,
with every Pi . One formally writes the correspondence as:

Pi −→ �i(Pi) (14)

The �is31 were seen to be unital, associative, but in general non-commutative,32

K-algebras, which a fortiori are Z+-graded discrete differential algebras
(manifolds)

�i =
⊕
n∈Z+

�n
i =

Ai︷︸︸︷
�0

i ⊕
Ri︷ ︸︸ ︷

�1
i ⊕ �2

i ⊕ . . .≡ Ai ⊕ Ri (15)

with Ai an abelian subalgebra of �i
33 and Ri a graded differential

Ai-module.34 Indeed, there is a discrete version di of the usual nilpotent Cartan-de
Rham-Kähler differential operator effecting K-linear grade-raising transitions of
the sort di : �n −→ �n+1.

The careful reader will have perhaps noticed the following apparent dis-
crepancy here: While Sorkin’s Pis were purely discrete topological structures,
their Gel’fand-dual picture in terms of the �i appears to encode additional infor-
mation about the differential structure (of the original continuum X that Sorkin
started with). How did ‘differentiability’ (differential structure) creep into our con-
siderations when, following Sorkin, the original investigations pertained only to
‘continuity’ (:topological structure)? The reason is that the Pis can be also thought
of as homological objects—as a matter of fact, as simplicial decompositions of
the original manifold X. That is to say, the Pis can alternatively (and equivalently)
be viewed as simplicial complexes Ki , and as a result, their corresponding inci-
dence algebras as incidence algebras of simplicial complexes �i(Ki) (Raptis and

31 From now on we drop the (Pi ) arguments from the �is.
32 They are abelian when the Pis are discrete (i.e., completely disconnected, trivially Hausdorff)

topological spaces.
33Ai , generated by the ‘self-incidences’ (i.e., the reflexive relations of the points) in the underlying

poset Pi , is a discrete analogue of the algebra C∞(M) of coordinates (or of points, by Gel’fand
duality/spectral theory) on a smooth manifold M .

34Ri is a discrete analogue of the classical C∞(M)-module of smooth differential forms on a
differential manifold M . Each �n

i in Ri is a linear subspace of �i .
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Zapatrin, 2000, 2001; Zapatrin, 2002).35 The dis of the �is can now be expressed
in terms of the nilpotent homological boundary δ (border) and coboundary δ∗

(coborder) operators (Zapatrin, 2002).36 The dual character of the �is relative
to the Kis can now be understood simply by noting that the former’s elements
are cohomological entities—i.e., discrete differential form-like objects, which are
obviously dual to the homological simplices in the Kis.

3.3. Finitary Differential Triads

The observation above that the �is encode not only topological, but also
differential geometric information (coming from X), motivated this author to try
to apply the ADG-machinery to a finitary setting. But for that, some sheaf-like
structure was needed to be introduced first.37 Thus, finitary spacetime sheaves
(finsheaves) Si over Sorkin’s finitary posets were introduced and developed in
Raptis (2000b). Originally, finsheaves were conceived, in complete analogy to the
Pis, as genuine finitary approximations of the sheaf C0

X of continuous (R-valued)
functions on the topological manifold X, again in the sense that an inverse system
thereof possessed a projective limit sheaf that is topologically indistinguishable
from C0

X. However, the original intention to build differential, not just topological,
structure into the finsheaves mandated that this author should define finsheaves of
incidence algebras. This definition was straightforward to arrive at since it was
realized early on that the map (14) is, by construction,38 a local homeomorphism—
alias, a sheaf (Mallios, 1998a,b). Thus, finsheaves of incidence algebras �i—
essentially, the sheaf-theoretic localizations of the �is over Sorkin’s Pis—were
introduced, and hence the ADG-theoretic panoply was ready to be used in the
finitary realm.

35 Indeed, the order n of each �n in (15) corresponds to the simplicial degree (or cardinality) of the
respective simplex in Ki (Raptis and Zapatrin, 2000).

36 In categorical terms, the simplicial analogue of the correspondence (14), K −→ �i , turns out to
be a (contravariant) functor between the category of (finitary) simplicial complexes and simplicial
maps (or equivalently, the category of finitary posets and poset morphisms—i.e., order preserv-
ing/monotone maps), and the category of (finitary) incidence algebras and algebra homomorphisms
(Raptis and Zapatrin, 2000, 2001; Zapatrin, 2002).

37 The motivation mentioned above was a mathematical one. The physical motivation was that this
author ultimately wished to localize or gauge (thus dynamically vary and ‘curve’) quantum causality
(i.e., the incidence algebras modelling qausets) (Mallios and Raptis, 2001, 2003; Raptis, 2003).
In turn, the act of ‘localization’ or ‘gauging’ is (mathematically) tautosemous to ‘sheafifica-
tion’ (Mallios, 2004a), followed by endowing the resulting sheaf with a connection D (Mallios,
1998a,b).

38 The construction alluded to above was coined Gel’fand spatialization in Raptis and Zapatrin (2000,
2001) (see also Zapatrin (1998)), whereby roughly, the ‘local’ Sorkin order-topology of Pi is
equivalent to the ‘local’ Rota topology assigned to the (primitive) spectra of the �is, a procedure
which is effectively an application of Gel’fand duality to the finitary realm of the Pis.
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Indeed, finsheaves of incidence algebras define (graded) finitary differential
triads

Ti :=
(

Ai ≡ APi
, di, Ri ≡ RPi

=
⊕
n≥1

�n
i

)
39 (16)

which have been seen to carry, virtually unaltered, to the ‘discrete,’ finitary setting
certain key results of the CDG of smooth manifolds, such as the Poincaré lemma,
the de Rham theorem, the Weil integrality theorem, the Chern-Weil theorem, and
much more (pertaining, for example, to geometric prequantization of gravity in an
ADG-setting) (Mallios and Raptis, 2002).

Those applications aside for a moment, at this point we would like to close this
paragraph by giving a characteristic example of the aforementioned categorical
versatility of ADG, as opposed to the rigidity of the manifold-based CDG and
of the category Man underlying it. To this end, we show how one can arrive
straightforwardly from Sorkin’s finitary posets to finitary differential triads without
having to go the long laboriously ‘constructive’ way via simplicial complexes,
their Gel’fand-dual incidence algebras and the finsheaves thereof.40 This involves
an immediate application to the Sorkin scheme of the push-out and pull-back
(along continuous maps between base topological spaces) results mentioned in
the previous section, as follows:

• First, unlike Sorkin whose considerations in Sorkin (1991) were purely
topological as noted earlier, we assume that (the region of) the manifold X

carries not only the usual topological (C0), but also the standard differential
(C∞) structure of a locally Euclidean space. What amounts to the same
from an ADG-theoretic vantage, we suppose that X supports the classi-
cal K-algebraized space D∞ := (X, C∞

X ) carrying the classical differential
triad T∞ := (C∞

X , ∂,�X) of a differential manifold.

• Then, we factor à la Sorkin X by
Ui∼ to obtain the finitary substi-

tute Pi (11) and, as a result, the continuous surjection fi between
them (13).

39 Again, like before, from now on we will omit the base space Pi subscript from the finsheaves
involved, but we will retain the ‘finitarity’ or resolution index ‘i’ to be used in the projective and
inductive limits subsequently. Also note that built into Ti are higher order (or grade) extensions �n

of the �1 appearing in the abstract differential triad in (4), as well as higher order prolongations
dn

i (n ≥ 1) of ∂i ≡ d0
i , which K-linearly map �n

i to �n+1
i (Mallios and Raptis, 2001, 2002, 2003).

The latter will be generically represented by the finitary version di of the Cartan-de Rham-Kähler
(exterior) differential.

40 The reader should note that in the past trilogy (Mallios and Raptis, 2001, 2002, 2003) of finitary
applications of ADG, we indeed followed that ‘roundabout’ way in order to define finitary differential
triads.
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• Finally, we evoke the push-out result of Papatriantafillou and endow Pi

with the differential triad fi∗(T∞), which can be readily identified with the
finitary differential triad Ti of (16).

This fi∗-induction of the (essentially algebraic—i.e., sheaf-theoretic) differential
geometric mechanism from T∞ on the continuum X to Ti on the ‘discretum’ Pi

has been recently coined the ‘Newtonian spark’ in Mallios (2004b); Mallios and
Raptis (2004) and it exemplifies what we regard as being the subtle epitome of
ADG, namely, that although we may initially inherit the (essentially algebraic)
differential geometric mechanism—in essence, the differential d—from a base
space (here, be it a locally Euclidean one such as X), we then ‘forget’ about that
background sheaf-theoretic ‘localization scaffolding’ and develop all the various
differential geometric constructions ‘algebraically in the stalk’ (i.e., with the al-
gebraic objects living in the relevant sheaves’ spaces—or what is the same, solely
with the relevant sheaves’ sections), and what’s more, completely independently
of that surrogate X, which just furnished us with the invaluable for actually doing
differential geometry d.

3.4. Finitary Vacuum Einstein Equations

It has been shown (Mallios and Raptis, 2003) that with the Tis and the gen-
eral ADG-machinery in hand, one can transcribe to the finitary realm all the ideas
and constructions of the manifold-based (pseudo)-Riemannian geometry that we
recalled in Section 2. That is, one can develop a ‘finitary Riemannian geometry,’
which is a particular instance of the background manifoldless Riemannian geom-
etry of Section 2. In particular, one can formulate on each Ti a finitary version of
the vacuum Einstein Equations (9), reading:

Ri(Ei) = 0 (17)

with Ri the finitary version of the Ricci scalar, and Ei the ∗-dual of the finsheaf
�i of incidence algebras, as posited by ADG.

Having the Tis and (17) holding on each of them at our disposal, in the next
section, we take on their inverse and direct limits.

4. THE CATEGORY OF DIFFERENTIAL TRIADS IS BICOMPLETE

That T is bicomplete is in fact just a result (theorem) in the category-theoretic
perspective on ADG (Papatriantafillou, 2000, 2001, 2004, 2003, 2005), but due
to its importance in the present paper, we promote it to the title of the present
section. Indeed, as noted earlier, T is closed under both projective and inductive
limits. This means that inverse and direct systems of differential triads possess
categorical limit and colimit spaces that are themselves differential triads. Since
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DTi is a subcategory of DT, projective and inductive systems of Tis have inverse
and direct limit structures that are themselves triads; albeit, not necessarily finitary,
‘discretum’ ones. In fact, as we shall see in the next paragraph, the limit triads that
we are interested in and are of significance for the physical interpretation of our
theoretical scheme are ‘infinitary,’ ‘classical continuum’ ones.

4.1. Inverse and Direct Limits of Ti s and Their Vacuum Einstein Equations

We first start with Sorkin’s result noted earlier, namely, that the inverse
system

←−P of the Pis has, at the limit of maximum (topological) resolution or
refinement of the Uis, a projective limit space P∞ that for all intents and purposes
is topologically indistinguishable from (i.e., homeomorphic to) the C0-continuum
X that we started with. Likewise for the analogous finsheaf-discretizations of C0

X

in Raptis (2000b).
As it has already been pointed out numerous times in the past trilogy (Mallios

and Raptis, 2001, 2002, 2003), since the �is are categorically dual to the Pis, one
infers that they too comprise, dually now, a direct system

−→
R = {�i} possessing

an inductive limit incidence algebra which, in view of the fact that the �i encode
information not only about the topological, but also about the differential, struc-
ture of the continuum X, should come close to emulating the classical differential
geometric structure of X—namely, the C∞(X)-module of differential forms on
the differential manifold X.41 Accordingly, passing to finitary (‘discretum’) dif-

ferential triads, they also constitute a projective/inductive system
�
T 42 possessing,

according to Papatriantafillou’s results above, at the infinite limit of resolution
(refinement) of the Uis, an ‘infinitary’ (continuum) triad T∞ which comes as
close as possible (via Sorkin’s scheme) to the classical one T∞ = (C∞

X , ∂, OmgX)
supported by the differential manifold X.

The expression ‘comes as close as possible to T∞’ above pertains to the
fact that, much in the same way that one does not actually recover X as the
inverse limit space of

←−P , one also does not exactly get C∞
X and the C∞(X)-

module sheaf � of (germs of) smooth differential forms (over the differential
manifold X’s points) at the direct limit of (infinite localization of) the �is in−→
R . Rather, similarly to the fact that one gets a ‘larger’ inverse limit topological
space P∞ having X as a dense subset in Sorkin’s scheme (i.e., roughly, P∞ has
more points than the original X), one anticipates

−→
R to yield at the inductive

41 This has been investigated in detail in Raptis and Zapatrin (2000, 2001); Zapatrin (2002, 2001).
42 The joint epithet ‘projective/inductive’ to

�
T pertains exactly to the duality mentioned above: while

the Pis—the base spaces of the Tis—constitute an inverse system ←−P , their categorically dual �is—

inhabiting the stalks of the finsheaf spaces in the Tis—constitute a direct system
−→
R. Informally-

syntactically speaking, Ui -refinement for the Pis goes from-right-to-left, while for the �is from-
left-to-right. (See expression (150) in Mallios and Raptis (2003).)
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limit a (‘topological’) algebra A∞ ‘larger’ than C∞(X) and consequently an A∞-
module R∞ of differential form-like entities ‘larger’ than the standard C∞-one.
In Zapatrin’s words, when he was working out continuum limits of incidence
algebras of simplicial complexes (Zapatrin, 2002, 2001): “it is as if too many
functions and forms want to be smooth in the continuum limit.”43 One intuits that
much in the same way that Hausdorff reflection gets rid of the ‘extra points’ of
P∞ to recover the C0-manifold X, so by ridding �∞ of the ‘rogue’ extra functions
and forms on P∞ (e.g., by factoring it by a suitable differential ideal; Zapatrin
(2002, 2001)), one should recover the usual smooth functions and forms over the
differential manifold X. Nevertheless, the important point for the exposition here
is that one does indeed get a continuum differential triad, which however, only in
order to be formally distinguished from the classical C∞-smooth one T∞ to avoid
any minor technical misunderstanding, one might wish to call ‘C-smooth’ and
symbolize it by T∞ (Mallios and Raptis, 2003). On the other hand, after having
alerted the reader to this slight distinction between T∞ and I∞, in the sequel, for
all practical purposes and in order to avoid proliferation of redundant symbols,
we shall abuse language and assume that T∞ and T∞ are ‘essentially isomorphic’
(i.e., effectively equivalent and indistinguishable). So, both will be generically
referred to as the classical continuum differential triad (CCDT), with the symbols
T∞ and T∞ used interchangeably.

Thus, we formally write for this joint inverse/direct limit procedure exercised

on
�
T

i→∞
lim
∞←i

�
T = T∞ ≡ T∞ (18)

As argued and shown in detail in Mallios and Raptis (2003), each f cq-differential
triad Ti carries on its shoulders the whole ADG-machinery and structural panoply
involved in the usual manifold-based (pseudo)-Riemannian geometry. In particu-
lar, (17) holds on each Ti and hence this information carries to the inverse/direct

limit of
�
T , which in turn is seen to support an inverse system

←−E of f cq-vacuum
Einstein equations.44 We thus recover a smooth continuum limit version of the
vacuum Einstein equations, holding on T∞ (or equivalently, on T∞), which we
formally depict as:

lim
∞←i

←−E = lim
∞←i

Ri(Ei) = R∞(E∞) = 0 (19)

with E∞ the dual of the C∞
X -module sheaf of (germs of) smooth differential forms

on the differential manifold X comprising the CCDT T∞, and R∞ the classical
smooth (i.e., A ≡ C∞

X -valued) Ricci curvature scalar.

43 Roman Zapatrin in private e-mail correspondence.
44 For example, again see expression (150) in Mallios and Raptis (2003).
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4.2. ‘Correspondence Limit/Principle’ Interpretation
of Inverse/Direct Limits

We briefly remark here that in Raptis and Zapatrin (2000, 2001), in view
of the quantum interpretation that the �is enjoy, the continuum inverse limit of←−P , and dually, the direct limit of

−→
R , was interpreted as Bohr’s correspondence

principle, otherwise known as the classical continuum limit. As a result, (19) may
be interpreted as follows: at the continuum limit of infinite topological resolution
(or refinement) of X into its points, or equivalently, of infinite sheaf-theoretic
localization of the incidence algebras over X’s points, one obtains the classical
continuum vacuum Einstein equations45 from the individual f cq-ones holding
on each ‘discretum’ triad Ti (17). In other words, and this will prove to be of
importance for some remarks that we are going to make in the next two sections
regarding the application of ADG to both classical and quantum gravity, ADG,
and the vacuum Einstein gravity to which it has been applied so far, is genuinely
background spacetime-independent, i.e., the vacuum Einstein equations are in
force independently of whether one assumes the base space(time) to be a ‘quantal
discretum’46 or a ‘classical continuum.’47

5. FINITARY-ALGEBRAIC EVASION OF THE INTERIOR
SCHWARZSCHILD SINGULARITY

We have now built a sufficient conceptual and technical background to present
in a straightforward fashion the ADG-theoretic evasion of the inner Schwarzschild
singularity entirely by finitistic and algebraic means. First however, in order to
present that ‘resolution’ in a more effective way, we recall a contrasting theory
of the interior Schwarzschild singularity. This is the standard one based on the
usual approach to GR via CDG, the C∞-smooth base spacetime manifold and
the smooth Lorentzian metric on it (i.e., in toto, the classical pseudo-Riemannian
geometry underlying GR). The following are well known, amply worked out facts
about the Schwarzschild solution of the Einstein equations, which we thus present
rather briefly and informally.

45 That is, the vacuum Einstein equations holding over the entire smooth manifold X—i.e., on
T∞.

46 As it were, when (locally at least) only a finite number of ‘degrees of freedom’ of the vacuum
gravitational field are excited (i.e., when only a locally finite number of events are involved, or
dually/functionally, when only a finite number of ‘modes’ of the gravitational field ‘contribute’
to/‘participate’ at the gravitational dynamics at each spacetime event), and when some sort of
quantization has already taken place (Raptis and Zapatrin, 2000, 2001).

47 That is, when the gravitational field ‘triggers’ or ‘excites’ a continuous infinity of spacetime events in
the manifold, and all ‘quantum interference’ (coherent quantum superpositions between the elements
of the �is) has been lifted (Raptis and Zapatrin, 2000, 2001).
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5.1. Classical Schwarzschild Preliminaries: The Standard View,
the Usual Suspects and the Main Problematics

We begin by noting some familiar features of GR. First of all, the original
theory was formulated in terms of the smooth metric tensor gµν on a differential
spacetime manifold X. That is to say, the sole dynamical variable in GR (as orig-
inally formulated by Einstein) is gµν , whose 10 independent C∞(X)-valued com-
ponents represent the gravitational potentials and at the same time they enter into
the pseudo-Riemannian line element representing the chrono-geometric structure
of the spacetime continuum. In a nutshell, gµν represents gravity-cum-background
spacetime chrono-geometry, and the dynamical equations that it obeys in the ab-
sence of matter are the (vacuum) Einstein equations (19)—formally, non-linear
(hyperbolic) second-order partial differential equations (PDEs) for gµν .

The Schwarzschild solution of the said equations represents the spherically
symmetric vacuum gravitational field outside a massive, spherically symmetric
body of mass m. On grounds of physical import alone, our choice of this particular
solution on which to exercise our ADG-machinery and results in order to ‘resolve’
it may be justified on the fact that experimentally all the differences between
non-relativistic (Newtonian) gravity and GR have been based on predictions by
this solution (Hawking and Ellis, 1973). Also, since comparison with Newtonian
gravity allows us to interpret the Schwarzschild solution as the gravitational field
(in empty spacetime) produced by a point-mass source m viewed from far away
(i.e., from infinity) (Hawking and Ellis, 1973), Finkelstein’s original treatment
of the Schwarzschild gravitational field as being produced by a point-particle in
an otherwise empty spacetime manifold (Finkelstein, 1958) appears to be a good
starting choice.

So first, following Finkelstein, one assumes that spacetime is a smooth (C∞)
or even an analytic (Cω) manifold X,48 and then one places at its ‘center’ (:interior)
a point-mass m. For a Cartesian coordinate system with m at its origin, the ‘ef-
fective’ spacetime manifold of this point-particle becomes X minus the particle’s
‘wristwatch’ time-line Lt := {p ∈ X : xi(p) = 0, (i = 1, 2, 3, t ≡ x0)} ; that is
to say,

XS = X − Lt (20)

with the subscript ‘S’ standing for ‘(S) chwarzschild.’ Then, one observes that
m is the source of a gravitational field, represented by a smooth (or analytic)

48 In this paper, we shall not distinguish between a C∞- and a Cω-manifold (or for the same reason,
between CDG and Calculus or Analysis). From an ADG-theoretic viewpoint, as noted earlier, a
smooth manifold X corresponds to choosing C∞

X for structure sheaf, while an analytic one has A ≡
Cω

X—the structure sheaf of coordinate functions (of X’s points) each admitting analysis (expansion)
into power series. Admittedly, Cω- is a slightly stronger assumption for a manifold than C∞-, but
this does not change or inhibit the points we wish to make here about the Schwarzschild singularity
and its bypass in the light of ADG.
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spacetime metric gµν , which obeys the vacuum Einstein equations (19). The
Schwarzschild solution of the equations (19) is the Schwarzschild metric gS

µν

expressed in Cartesian-Schwarzschild coordinates, which in turn defines an in-
finitesimal proper time increment, as follows:

ds2
S = (

1 − r−1
S

)(
dx0

S

)2 − (
1 − r−1

S

)−1
dr2

S − (
dxi

Sdxi
S − dr2

S

)
(21)

expressed in normalized, ‘natural’ units in which the so-called Schwarzschild
radius (r = 2m) and the speed of light (c = 108m/s) are equal to 1.49

Evidently, gS
µν has two singularities: One right at the locus of the point-

mass—the Cartesian origin (r = 0), and one at the Schwarzschild radius
(r = 1) delimiting a space-like 3-dimensional unit-spherical shell in X, com-
monly known as the Schwarzschild horizon. The two singularities are usually
pitched as the interior (inner) and exterior (outer) Schwarzschild singularities,
respectively.50

Finkelstein (1958) initially considered an analytic metric gF
µν on X, expressed

in what is nowadays usually called Eddington–Finkelstein coordinates,51 defining
the following infinitesimal spacetime line element

ds2
F = (

1 − r−1
F

)(
dx0

F

)2 + 2r−1
F dx0

F drF − (
1 + r−1

F

)
dr2

F − (
dxi

F dxi
F − dr2

F

)

= −(
1 − 2m

r

)(
dn±)2 ± 2dn±dr + r2

(
dθ2 + sin2 θdφ2

)
(22)

and he then showed that, for the region of X outside the Schwarzschild hori-
zon 3-shell (rF > 1), the following simple ‘logarithmic time coordinate change’
from the analytic Finkelstein ωAF = ω(xµ

F ) coordinates to the also analytic
Schwarzschild ones ωAS = ω(xµ

S )

ωAF −→ ωAS :

x0
F −→ x0

S = x0
F + ln(rF − 1)

xi
F −→ xi

S = xi
F

(23)

49 Also, in (21) above, rS =
√

xi
Sxi

S and drS = r−1
s xi

Sdxi
S. The more familiar (i.e., not in natural units)

expression for the Schwarzschild line element in cartesian coordinates is (1 − 2m
r

)dt2 + dx2 +
dy2 + dz2 + 2m

r(r−2m) (xdx + ydy + zdz)2, while in spherical-Schwarzschild coordinates (again not

in natural units), it reads −(1 − 2m
r

)dt2 + (1 − 2m
r

)−1dr2 + r2(dθ2 + sin2 θdφ2).
50 The Schwarzschild horizon is the horizon of the Schwarzschild black hole, and it is supposed to host

the inner Schwarzschild singularity at its kernel, ‘beyond the horizon.’
51 The Eddington–Finkelstein frame consists of so-called logarithmic-null spherical coordinates

(n±, r, θ, φ), with the null coordinate n± being either advanced n+ := t + r
′

or retarded n− :=
t − r

′
, and r

′
defining a logarithmic radial coordinate r

′
:= ∫

dr

1−2mr−1 = r + 2m log(r − 2m).
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transforms the line element ds2
F (and the associated gF

µν) in (20) to the
Schwarzschild one ds2

S (and its associated gS
µν) in (21).

Conversely, he argued that since R∞ in (19) is a tensor with respect to
the ωAF coordinates, the vacuum Einstein equations hold in all X (now co-
ordinatized by ωAF

52 )—in particular, they hold on the Schwarzschild horizon
unit-shell.

In toto, Finkelstein showed that the analytic coordinate change

XS ≡ (X, ωAS) −→ (X, ωAF ) ≡ XF (24)

amounts to an analytic extension of XS (coordinatized by the Cartesian ωAS and
carrying the analytic gS

µν defining ds2
S above—which is singular at r = 1), to XF

(coordinatized by the analytic ωAF and carrying the analytic gF
µν defining ds2

F ,
which is not singular at the Schwarzschild radius!).

In fact, Finkelstein showed that the said analytic extension of XS to XF can
be carried out in two distinct ways,53 each one being the time-reversed picture
of the other, which in turn means that the r = 1 Schwarzschild horizon, far from
being a real singularity, acts as “a true unidirectional membrane” in the sense
that “causal influences can pass through it only in one direction” and, moreover,
he gave a particle-antiparticle interpretation of this gravitational time-asymmetry
(Finkelstein, 1958).54

On the other hand, about the inner Schwarzschild singularity Finkelstein
concluded that the theory (i.e., the manifold and CDG-based GR) is out of its
depth as there is no (analytic) coordinate change that can remove it like the
outer one. In other words, the interior Schwarzschild singularity, right at the
point-particle m, is regarded as being a ‘genuine,’ ‘true’ singularity of the gravita-
tional field, not removable (or resolvable) by analytic (i.e., CDG-theoretic) means
(Finkelstein, 1958; Hawking and Ellis, 1973; Clarke, 1993).55 Which brings us to
the general consensus about ‘true,’ as opposed to merely ‘virtual’ or ‘coordinate,’
C∞-spacetime singularities.

52 Which we may just as well symbolize by XF .
53 Depending on whether one chooses advanced or retarded logarithmic-null coordinates.
54 The null (in the Finkelstein frame) hypersurface Schwarzschild horizon is also known as a closed

trapped surface (Hawking and Ellis, 1973), which ‘traps’ past- (resp. future-) directed causal (i.e.,
time-like or null) signals depending on whether one chooses advanced (resp. retarded) Finkelstein
coordinates to chart the original manifold. Also, it can be easily seen that inside Schwarzschild
horizon the original time and radial coordinates exchange roles.

55 Indeed, in the n+-picture, any future-directed causal curve crossing the Schwarzschild horizon can
reach r = 0 in finite affine parameter distance (see next paragraph). Moreover, it can be shown that

as r −→ 0 the Ricci scalar curvature R in (19) blows up as m2

r6 , while there is no further analytic

extension (even in a C2-differential, or even in a C0-topological, fashion!) of the Schwarzschild
spacetime manifold across the r = 0 locus.
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5.2. ‘True’ Versus ‘Coordinate’ Singularities: A CDG-Conservatism
and Monopoly Underlying All Approaches (So Far)
to Spacetime Singularities

The two Schwarzschild singularities above provide a good example of the
general way we think about and actually deal with gravitational singularities in
the CDG and manifold-based GR.

To begin with, it must be stressed up-front that there is no general, concise
and ‘rigorous’ definition of (‘true’) singularities in GR (Geroch, 1968; Hawking
and Ellis, 1973; Clarke, 1993; Rendall, 2005). Rather, one proceeds by elimination
and exclusion in order to identify genuine gravitational singularities and separate
them from ‘apparent,’ coordinate ones, in the following way. Given a singular
gravitational spacetime—by which one means a manifold M (of a certain order
of differentiability56 ) endowed with a (Lorentzian) metric g (of maximum order
of differentiability assumed for the underlying M) satisfying Einstein’s equations
and possessing singularities at certain loci of M—one tries to analytically (or
anyway, smoothly, or in a Ck-fashion) extend M57 past those loci so as to include
them with the other ‘regular’ points of M . If there happens to be such an exten-
sion, the singularity in focus is regarded as an ‘apparent,’ ‘virtual,’ coordinate
one—an indication that the physicist originally chose an inappropriate system
of coordinates (patches) to chart M and to express gµν with respect to it. The
exterior Schwarzschild singularity we saw earlier is the archetypical example of
such a coordinate singularity. On the other hand, if there is no such extension,
the ‘anomalous’ locus is branded a ‘true,’ ‘real,’ ‘genuine’ singularity. The inner
Schwarzschild singularity is the archetypical example of such a real singularity,
in the vicinity of which gS (and the Ricci scalar) diverges to infinity. Kruskal’s
maximal analytic extension of XS above did not manage to include it with the
other regular points of the spacetime manifold (Kruskal, 1960). Coordinate sin-
gularities are not considered to be ‘physical singularities’ (i.e., they are not of
physical significance), while genuine ones are (Geroch, 1968; Hawking and Ellis,
1973; Clarke, 1993; Rendall, 2005).

Clearly then, coordinate singularities are regarded as being ‘regular points in
disguise,’ and the differential manifold, together with the differential equations of
Einstein that it supports, are still in force since they can be continued past them.
On the other hand, this is not so for true singularities. The latter are loci where
the differential law of gravity appears to stop (i.e., it ceases to hold) somehow, or
even more graphically, it breaks down. Genuine singularities are sites where CDG
(and the smooth manifold supporting its constructions) has reached the limit of

56 That is, an analytic (A ≡ Cω
M ), or smooth (C∞

M ), or even a manifold of finite order of differentiability
(Ck

M ).
57 Here, ‘to extend M’ means essentially ‘to change coordinate structure sheaf of differentiable func-

tions on M .’
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its applicability and validity. Thus, let us recall briefly from Hawking and Ellis
(1973); Clarke (1993) the three general kinds of gravitational singularities, and
what underlies them all. We shall first mention en passant how one usually copes
with genuine singularities in a manifestly CDG-conservative fashion.

Apart from analytic inextensibility, the other ‘defining’ feature of real space-
time singularities is (causal geodesic) incompleteness. Roughly, the idea behind
spacetime incompleteness is that (material) particles cannot reach (genuine) sin-
gularities in ‘finite (proper) time’ by following, under the focusing action of the
strong gravitational field at the purported singular loci, smooth (causal) paths
(geodesics) in the manifold M . Historically, the importance of (causal—i.e., time-
like and null) geodesic incompleteness was first recognized in Geroch (1968).
Subsequently, null geodesic incompleteness was the central prediction of the cel-
ebrated singularity theorems of Hawking and Penrose (Hawking and Penrose,
1970; Hawking and Ellis, 1973). However, it is not entirely clear what spacelike
incompleteness means physically, since spacelike curves in M do not have an
interpretation as histories of physical objects (i.e., fields and their particles). On
the other hand, as Clarke points out in Clarke (1993), one need not consider only
‘free falling’ observers following causal geodesics, since other physically admis-
sible frames—ones with bounded acceleration for instance—may be able to reach
the point-loci in question in finite (proper) time, even though geodesic observers
cannot. In order to include the world-lines of such in principle arbitrarily accel-
erated observers, paths more general than geodesics—ones parameterized not by
proper time, but by an arbitrary so-called general affine parameter—must also be
included in the definition of incompleteness. In toto, incompleteness pertains to
the idea that curves of finite (general affine parameter) length cannot reach the
singular loci in question. The bottom-line of all this is that a spacetime is called
singular if it is incomplete and inextensible, in the above sense.

Now there appears to be a clear-cut way to proceed in dealing with true
spacetime singularities, namely, one can relegate them to the ‘edge’ of a maximally
extended spacetime manifold and view them as ‘asymptotically terminal points’
of incomplete curves. That is, one thinks of genuine singularities as loci situated
on a certain boundary set ∂M adjoined to M , with the latter endowed with an
‘appropriate’ topology, which in turn qualifies M = M ∪ ∂M as the closure of
M and recognizes ∂M as a topological boundary proper. Parenthetically, without
going into any detail, so far there are two basic singular boundary constructions:
The causal boundary of Geroch, Kronheimer and Penrose (Geroch et al., 1972),
and the so-called b-boundary of Schmidt (Schmidt, 1971). Each of these two
boundaries (and associated topologies) has its own pros and cons that we do not
want to go into here, but for a detailed exposition of and comparison between
them the reader is referred to Hawking and Ellis (1973); Clarke (1993).

Having ascribed a topology and a boundary to the spacetime continuum, and
concomitantly having pushed the genuinely singular loci out of the regular M and
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virtually to ‘the margin of spacetime’ (i.e., onto ∂M), one identifies three general
types of genuine C∞-gravitational singularities (Clarke, 1986):

1. (Differential) geometric singularities (DGS): boundary points for which
there is no Ck-differential extension of (the metric on) M so as to remove
them.

2. (Various) energy singularities (VES): boundary points for which there
is no (analytic) extension of M that removes them satisfying at the same
time various energy conditions (inequalities) (Clarke, 1993), the most
prominent and generic ones being gravitational energy positivity (:grav-
ity is always attractive) and the associated weak and dominant energy
conditions (Hawking and Ellis, 1973).

3. (Solution) field singularities (SFS): boundary points for which there is
no (analytic) extension of M that removes them and is a solution of the
Einstein field equations in question (e.g., Einstein-scalar or the Einstein-
fluid equations). The important thing to mention here is that the term
solution to the field equations means generalized smooth or smeared—
what is commonly known as distributional, solution.

Plainly, (analytic) inextensibility—loosely speaking, our inability to apply CDG
or Analysis—underlies all three ‘definitions’ of genuine singularities above.
Metaphorically speaking, true singularities are breakdown points of the Differen-
tial Calculus. We will come back to this point in the sequel.

In the present paper, we will be predominantly interested in DGSs—which
incidentally are singularities of the ‘purest’ kind visà-vis differential geometric
considerations (Clarke, 1986)—as they manifestly depict the aforesaid Calculus
or ‘classical differentiability’ breakdown, as Clarke (1986) explicitly points out:

. . . Thus the definition of a [differential geometric] singularity depends on the definition
of an [analytic] extension of [the] space-time [manifold], and so the question of what
counts as a singularity depends on what sort of extension is allowed. We call a boundary
point [of a smooth manifold] a class Ck [differential] geometrical singularity if there is
no [analytic] extension with a Ck metric that removes it; i.e., if it is associated with a
breakdown of differentiability of the metric at the Ck level . . . ” 58

It must be also noted here that the way in which we ascribe a topology and
construct a boundary to M on which true singularities are located, apart from its
physical motivation,59 exemplifies in our opinion the general CDG-conservative

58 In square brackets are our own additions for clarity and completeness.
59 For example, understandably the physicist would like to have a ‘controlled’ study of the asymptotic

behavior of, say, the Riemann curvature tensor (whose components represent gravitational tidal
forces) as one approaches (i.e., in the immediate neighborhood of) the singularity in focus—e.g.,
one would like to have an analytic picture of the way the curvature diverges in the neighborhood of
the singularity. By acquiring such an analytic picture, even if one does hope to ultimately remedy
singularities, one at least wishes to understand better what is going on near a singularity (e.g.,
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attitude regarding the appearance and treatment of singularities in GR, which we
briefly explain now.

Judging by the way we try to define genuine singularities by elimination and
technically (:mathematically) deal with them, on the one hand, physical spacetime
events are identified with the regular points of M—those at which the differential
equations of Einstein hold and they do not suffer from any ‘differential geometric
disease’ (e.g., the differentiability of the solution metric does not break down in
any sense at them as in the case of the DGSs above). On the other hand, gen-
uine, physically interesting and significant singularities are pushed—as it were,
by mathematical fiat—to the boundary of the spacetime continuum in order to
preserve the CDG-machinery within the otherwise regular M . This is precisely
what we refer to as the manifold and, in extenso, CDG-conservatism in our anal-
ysis of spacetime singularities (Clarke, 1993). Indeed, a self-referential pun is
intended here: the analysis of spacetime singularities is essentially the (manifold-
based) Analysis applied to the study of (true) spacetime singularities, which, ‘by
definition’—i.e., by the analytic inextensibility of M past them—ultimately resist
Analysis (analytic extension).

Genuine singularities, as opposed to merely coordinate ones, are loci where
the manifold-based Calculus (Analysis) comes to an end and hence the manifold-
based GR is out of its depth (i.e., the differential equations of Einstein appear to
break down and lose their predictive power—e.g., the solution metrics blow up
and ‘yield’ physically meaningless infinities for ‘observable’ quantities like the
curvature tensor). There is a tension here: physical spacetime events, including
coordinate singularities, are the regular points in the interior M of M where CDG
applies galore, but physical singularities are loci on ∂M) where CDG fails to apply
(breaks down), while, in a paradoxical sense, we seem to persistently employ CDG
(Analytical) means to study the latter (Clarke, 1993). This CDG-conservatism may
be simply understood and justified on the ground that the only way we so far know
how to do differential geometry is via (the ‘mediation’ in our calculations—in
fact, in our Differential Calculus!—of) a background continuum space(time), a
base differential manifold.

However, in view of the CDG-monopoly above and with ADG in mind, we
would like to draw a fine line here: while we agree that CDG (as a mathematical
framework for doing differential geometry) becomes inadequate at true singulari-
ties, we cannot accept that the physical law of gravity (modelled after a differential
equation) breaks down at a singularity all because we traditionally tend to identify
physical spacetime with our mathematical model M which in turn vitally supports
CDG. In this line of thought, Einstein’s words from Einstein (1956) immediately
spring to mind:

classify singularities according to their strength (Clarke, 1993)) and perhaps achieve a better control
of those unphysical divergences. To that end, so-called asymptotic growth boundary conditions at
the vicinity of the singularity are usually prescribed (Clarke, 1993).
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. . . A field theory is not yet completely determined by the system of field equations.
Should one admit the appearance of singularities?. . . It is my opinion that singularities
must be excluded. It does not seem reasonable to me to introduce into a continuum
theory points (or lines etc.) for which the field equations do not hold60 ”

Of course, the distinction we drew above would be simply unfounded had we
not have in our hands not only an alternative (to CDG) theoretical framework
for doing differential geometry independently of a background M , but also had
we not been able within this new framework to formulate Einstein’s equations as
differential equations proper which, a fortiori, could be explicitly shown not to be
impeded at all by (let alone break down in) the presence of singularities. ADG is
that theoretical framework.

In connection with the above, a key observation in ADG is that, since as
noted before a differential manifold is nothing else but the algebra C∞(M) (or the
structure sheaf A ≡ C∞

M ) of smooth coordinate functions on it (Gel’fand duality),
and since all the singularities in the CDG and manifold-based GR are singularities
of some smooth function on M , GR “carries the seeds of its own destruction”
(Bergmann, 1979) in the form of singularities exactly because the physical laws
that define it61 are mathematically represented by differential equations within
the confines of the CDG-framework. What amounts to the same, the apparent
‘self-destructive’ feature of GR corresponding to smooth spacetime singularities
is exactly due to the fact that we have a priori posited that physical spacetime is a
differential manifold.

The crux of the argument here is that it is not the gravitational field and the law
that it obeys that halt or even break down at a singularity as if they carry the seeds
of their own inapplicability and downfall, but that it is precisely our mathematical
means of effectuating (representing) that gravitational dynamics differential geo-
metrically via the M-based CDG—i.e., via C∞

M carrying the germs of all smooth
singularities—that mislead us into thinking that the CDG-based GR predicts its
own autocatastrophe.62 And all this again because we persistently identify phys-
ical spacetime with a background locally Euclidean space. In other words, it is
the mathematical notion of a ‘base manifold’ (CDG)—or equivalently, our choice
of C∞

M for structure sheaf of coordinates—in the expression ‘manifold-based GR’
that carries the differential geometric anomalies in the guise of singularities that
assail GR, and not the physical concept of gravitational field or even the differ-
ential equation that it obeys. Alas, the aforesaid CDG-monopoly and associated

60 Our emphasis. . . .
61 We tacitly assume that a physical theory is defined by the physical laws (:dynamical equations)

formulated within the mathematical framework adopted by (and adapted to!) that theory. As noted
before, in the case of GR as originally formulated by Einstein, that mathematical framework was
the CDG and manifold-based (pseudo)-Riemannian geometry.

62 And let it be stressed here that, in a ‘Popperian falsifiability’ sense, this is more often than not
regarded as a virtue of GR.
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conservatism has misled us into branding M as ‘physical spacetime’ and concomi-
tantly made us (con)fuse our mathematical framework (CDG) with the physical
theory itself (GR, gravity) to the extent that we coin genuine singularities as being
physical ones.

Furthermore, here one could go as far as to maintain that ‘Nature has sin-
gularities.’ Precisely this we find hard to swallow: genuine singularities sim-
ply pronounce that the differential manifold-based CDG has ceased to be a
good mathematical means (:language) for describing the physical law of grav-
ity, and that therefore, an alternative mathematical framework (for doing dif-
ferential geometry—provided of course that the physicist still wishes to repre-
sent physical laws by differential equations proper) must be sought after. What
is implicit here is our general working philosophy that whenever there ap-
pears to be a discord or asymphony between the mathematics and the physics,
one should invariably question and try to modify the former, not the latter.
One should blame it on our maths, not on Physis (Mallios and Raptis, 2003,
2004).

5.3. The ADG-Theoretic Finitary-Algebraic ‘Resolution’
of the Inner Schwarzschild Singularity: A ‘Static,’
Spatial, Localized Point-Resolution

This is the neuralgic part of the present paper in which everything that we
have been saying earlier synergistically comes to effect. We hereby present the
finitistic-algebraic evasion of the interior Schwarzschild singularity—regarded as
a ‘static,’ spatial, localized point-singularity—by ADG-theoretic means in the
form of an outline of the steps of a ‘syllogism’ leading directly to that ‘resolution,’
as follows:

• First we consider an open and bounded region X of a spacetime manifold
M , from which initially, à la Sorkin (Sorkin, 1991), we retain only its topo-
logical (i.e., C0-continuous) structure—that is, without a priori alluding to
its differential (i.e., C∞-smooth) structure.

• We then let a point-particle of mass m be situated at the ‘center’ of X, as
in Finkelstein (1958). That is, we assume that m is a point in X’s interior
without evoking any boundary ∂X construction.

• Next, we cover X by a locally finite open covering Ui . In the jargon of
ADG, the Us in Ui are called ‘open local gauges’ (Mallios, 1998a,b, 2001;
Mallios and Raptis, 2001, 2002, 2003).

• Subsequently, we first discretize X relative to Ui in the manner of Sorkin
(11), and then pass to the Gel’fand-dual representation of the resulting
finitary posets Pi in terms of discrete differential incidence algebras �i

(14).
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• Then we consider finsheaves (Raptis, 2000b) of incidence algebras �i in
the manner first introduced in Mallios and Raptis (2001). Parenthetically,
one may wish to bring forth from Raptis (2000a) the causet and qauset
interpretation that the Pis and their associated �is may be given, as well
as the finsheaves thereof (Mallios and Raptis, 2001).

• We then recall from (16) the finitary differential triads Ti (of qausets) that
the said finsheaves define. Here the reader may like to remind herself from
Section 3 of the two different ways in which we obtained Ti from X. The
first is the step-wise, ‘constructive’ way, starting from Pi and proceeding
via the �is and the finsheaves �i thereof. The second is the ‘immediate’
way, via Papatriantafillou’s categorical results, going directly from X (now
regarded not just as a topological, but as a differential manifold) and the
CCDT T∞ that it supports, to Ti , again starting from (i.e., with base
topological spaces) Sorkin’s Pis. Then one recalls from (17) that on these
triads the vacuum Einstein equations of an f cq-version of Lorentzian
vacuum Einstein gravity hold.

• Next, from Section 4 we recall that the said finitary differential triads

comprise an inverse/direct system
�
T possessing, following Sorkin via

Papatriantafillou’s categorical perspective on ADG, the CCDT T∞ ≡ T∞
as a projective/inductive limit (18).

• Moreover, a plethora of finitary ADG-theoretic constructions, vital for
the formulation of a finitary version of Lorentzian gravity regarded as a
gauge theory, are based on those Tis. These include for example the afore-
mentioned f cq-vacuum Einstein equations, the f cq-Einstein–Hilbert ac-
tion functional EHi from which these equations derive from variation
with respect to the Lorentzian gravitational f cq-connections Di , and the
f cq-moduli spaces Ai(Ei)/AutEi of those gauge-equivalent (self-dual)
f cq-spin-Lorentzian connections—as noted earlier, the gauge-theoretic
configuration spaces of our f cq-version of Lorentzian (vacuum) Einstein
gravity. Thus, it is fitting at this point to recall from Mallios and Raptis
(2003)63 the “11-storeys’ tower of f cq-inverse and direct systems” based

on the Tis in
�
T :64

Papatriantafillou’s results secure that all these inverse-direct systems yield,
like Sorkin’s original projective system

←−P , their classical continuum
counterparts at the limit of infinite resolution of the (base) Pis. Equiv-
alently, the continuum structures arise at the limit of infinite (topological)

63 Expression (150) there.
64 In the table below, the letter ‘v’ adjoined to our acronym ‘f cq’ stands for ‘(v)acuum’ (Mallios and

Raptis, 2003). Also, the reader can refer to the latter paper (or of course to the ‘originals’ (Mallios,
1998a,b, 2001)) for the important notion of ‘curvature space,’ which however we will not be needing
here.
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Ui-refinement (Sorkin, 1991) (or equivalently, at the limit of infinite sheaf-
theoretic localization of qausets—inhabiting the stalks of the respective
finsheaves at the finitary level—over X’s points).

• Of special interest to the proposed ‘resolution’ of the interior
Schwarzschild singularity here, is the inverse system

←−E at level 5 in (25)
above. The projective limit of this system recovers the classical continuum
vacuum Einstein equations over the whole (i.e., over all the points of) X

(19). In particular, we wish to emphasize that
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the (vacuum) Einstein equations hold over the genuinely singular from
the CDG-theoretic vantage point-mass m in the interior of X, and in no
sense—at least in the differential geometric sense of the DGSs in which
we are especially interested in the present paper—do they appear to break
down there.
In this sense we say that the inner Schwarzschild singularity has been
‘resolved’ by finitary-algebraic ADG-theoretic means.

Below, we wish to make some further points in order to qualify more this
‘resolution’:

• First, as noted in Section 2, since in the ADG-theoretic perspective on GR
it is the algebraic A-connection D and not the smooth metric g (as in the
original formulation of the theory) that is the sole, fundamental (dynami-
cal) variable, and since moreover ADG is genuinely smooth background
manifold-independent, the usual conception of the inner Schwarzschild
singularity as a DGS is not valid in our scheme since neither the metric nor
its Ck-extensibility (k = 0 . . . ω) are relevant, let alone important, issues
in the theory.

• Related to the point above is the fact that in ADG we replace the usual
CDG-based GR conception of a genuinely non-singular spacetime ‘the
solution metric holds (i.e., it is non-singular) in the entire manifold X’ by
the expression that ‘the field law (i.e., the differential equation of Einstein
that D defines via its curvature R) is valid throughout all the field’s
carrier (sheaf) space E over the whole base topological space(time) X,
which functional sheaf can in turn host all kinds of singularities.’ Alias,
there is no breakdown whatsoever of ‘differentiability,’ that is, of the
differential equation that D defines, in our scheme. The ADG-gravitational
field (D, E), and the dynamical differential equations that it defines via its
curvature, R(D)(E) = 0, is not impeded at all by any singularities that the
background topological space X (or the functional sheaf E localized on it)
might possess.

• One should note that the particular finitary-algebraic inner Schwarzschild
singularity ‘resolution’ presented above is closely akin to (or one might
even say that it follows suit from) the topological resolution of X à la Sorkin
(Sorkin, 1991), in the following sense: as the ur-cell 
(m)|Ui

blowing up
and smearing the classically offensive point m ∈ X becomes ‘smaller’ and
‘smaller’ with topological Ui-refinement (resp., the topology τi generated
by the open sets in the Uis becomes finer and finer), the law of gravity
holds as close to the point-singularity m as one wishes to get (i.e., at every
level ‘i’ of resolution or topological refinement of X by the open coverings
Ui). Furthermore, at the (projective) limit of infinite topological resolution
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(refinement) of X into its points, one gets that (19) actually holds on (over)
m itself.

• In connection with the last remarks, it is also worth pointing out that the
law of gravity holds both at the ‘discrete,’ f cq-level of the Pis (∀i) and
at the classical level limit corresponding to X, which further supports
our motto that the ADG-picture of (vacuum) Lorentzian Einstein gravity
(GR), and the f cq-version of it, is genuinely background-independent—
i.e., whether that background is a ‘classical continuum’ or a ‘quantal dis-
cretum.’ In toto, this emphasizes that our ADG-perspective on gravity is
manifestly (base) spacetime free (Mallios and Raptis, 2001, 2002, 2003,
2004). With respect to the CDG-problem of the inner Schwarzschild sin-
gularity and the usual divergence of the gravitational field strength (R)
in its vicinity, this freedom may be interpreted as follows: the vacuum
Einstein equations hold both when a (locally) finite and an uncountable
continuous infinity of degrees of freedom of the gravitational field are ex-
cited (as it were, when the gravitational field ‘occupies’ and effectuates a
finite and an infinite number of point-events in the background space(time)
X). Moreover, unlike the CDG-based picture of inner Schwarzschild sin-
gularity, no infinity at all (in the analytical sense of CDG)65 for R is
involved as m is ‘approached’ (in the categorical limit sense of ∞ ← i) by
Ri(Di) upon (topological) refinement of the 
(m)|Ui

s. There is no unphys-
ical infinity associated with this ADG-picture of the inner Schwarzschild
singularity, and in this sense the latter is ‘resolved into locally finite
effects.’

• Of course, all this can be attributed to the fact that the base topological
space(time) X (whether a continuum or a discontinuum) plays no role
whatsoever in the inherently algebraic differential geometric mechanism
of ADG, which, as noted earlier, derives from the algebra inhabited stalks
of the (fin)sheaves involved and not from the base space which is merely
a topological space. Technically speaking, this is reflected by the fact
that the categorical in nature ADG-formulation of the relevant differential
equations (here, the Einstein equations) involves (equations between) sheaf
morphisms, and in particular, A-morphisms such as R. Sheaf morphisms
by definition ‘see through’ the arbitrary base topological space X, which in
turn serves only as a surrogate scaffolding, having no physical significance
whatsoever as it plays no role in the gravitational dynamics—the (vacuum)
Einstein differential equations (9). X is used only for the mathematical
(:sheaf-theoretic) localization and concomitant gauging of the algebraic
objects in the relevant (fin)sheaves (Mallios and Raptis, 2001).

65 For example, when m is relegated to X’s boundary ∂X and a suitable topology is given to X =
X ∪ ∂X, as R −→ m, R diverges as 1/r6.
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• Even more important than the remarks about the physical insignificance
of the base space X, but closely related to them, is the issue of the A-
functoriality of dynamics already alluded to in Section 2. Namely, the
fact that the vacuum Einstein equations (9) are (local) expressions of the
curvature R of the gravitational connection D, which curvature is an A-
morphism (or A-tensor)—a ‘geometrical object’ in ADG jargon (Mallios
and Raptis, 2003), means that our generalized coordinates (or ‘measure-
ments’) in the structure sheaf A (that we assume to coordinatize the grav-
itational field D and solder it on E , which is anyway locally An) respect
the gravitational field (strength). Equivalently, it indicates that the field
dynamics ‘sees through’ our (local) measurements in A(U ). In turn, since
all the singularities are inherent in A—the structure sheaf of generalized
algebras of ‘differentiable’ coordinate functions, it follows that the A-
functorial field dynamics ‘sees through’ the singularities built into the A
that we assume. Equivalently, but in a more philological sense, A (and the
singularities that it carries) is ‘transparent’ to the R(D) engaging into the
gravitational field dynamics—the differential equations of Einstein (9). In
summa, the field (E,D) (and the differential equation that it defines via
its curvature) does not stumble on or break down at any singularity inher-
ent in A, since it passes ‘through’ (or over) them. In this sense, the term
‘singularity-resolution’ is not a very accurate name to describe how ADG
evades singularities. Perhaps a better term is ‘dissolution’ or ‘absorption’
in A.

A good example of the aforesaid singularity-dissolution or absorption in A is the
ADG-theoretic evasion of the inner Schwarzschild singularity regarded now as a
time-extended (distributional) spacetime foam dense singularity in the sense of
Mallios and Rosinger (Mallios and Rosinger, 1999, 2001; Mallios, 2001, 2002;
Mallios and Rosinger, 2002). We briefly discuss this ‘dissolution’ next, leaving a
thorough treatment to the forthcoming ‘paper-book’ (Mallios and Raptis, 2004).

5.4. A Second ‘Resolution’ of the Inner Schwarzschild Singularity
via Spacetime Foam Dense Singularities: A ‘Temporal,’
Distributional Time-Line Resolution

There is another possible evasion of the interior Schwarzschild singularity
by ADG-theoretic and finitary means, by regarding it this time not as a ‘static’
(stationary), ‘spatial,’ point-localized singularity as above, but as an extended, dis-
tributional one (much in the sense of SFSs above) extending along the ‘wristwatch’
(locally) Euclidean time-axis Lt of the point-particle (20).

The idea is to regard Lt as being inhabited by so-called ‘spacetime foam
dense singularities’ à la (Mallios and Rosinger, 2001, 2002). On the side, in



124 Raptis

mathematics these are singularities of generalized functions (distributions)—
situated on dense subsets of finite-dimensional Euclidean and locally Euclidean
space(time)s (manifolds)—functions which have been used as coefficients in and
have been occurring as solutions of non-linear (both hyperbolic and elliptic) par-
tial differential equations, as originally discovered and subsequently developed
entirely algebraically by Rosinger in a series of papers (Rosinger, 1990, 1999,?,
2005). En passant, these distributions can be organized into differential algebras
generalizing (and including) both the usual smooth functions C∞(M) on mani-
folds and the well known linear distributions of Schwartz. They form the basis of
Rosinger’s non-linear distribution theory. In physics, interest in such singularities
has arisen recently in the study of ‘spacetime foam’ structures in GR and QG, as
studied primarily by the Polish school of Heller et al. in the context of general-
ized differential spaces (Heller, 1991, 1993; Heller et al., 1989; Heller and Sasin,
1995b; Gruszczak and Heller, 1993; Heller, 1992; Heller and Sasin, 1995a).

In the context of (applications of) ADG, the said algebras have been organized
into sheaves and used as structure sheaves in the theory, replacing and generalizing
(actually, containing!) the classical one C∞

X . Indeed, classical (CDG) constructions
and results, normally based on C∞

M over a differential manifold M , (e.g., de Rham’s
theorem, Poincaré’s lemma, de Rham cohomology, Weil’s integrality theorem, the
Chern-Weil theorem etc), carry through, virtually unaltered, to the ‘ultra-singular’
realm of the spacetime foam dense singularities of the said generalized functions
(Mallios and Rosinger, 2001, 2002; Mallios, 2002); moreover, the vacuum Einstein
equations are seen again to hold, in full force, in their very presence (Mallios, 2001,
2002).

To comment a bit on the dense singularities, they are arguably the most robust
and numerous singularities that have appeared so far in the general theory of non-
linear partial differential equations, but three of their most prominent features that
we would like to highlight here, in comparison to the usual singularities carried
by C∞

X , are:

• First, their cardinality. These are singularities on arbitrary subsets of the
underlying topological space(time) X. In particular, they can be concen-
trated on dense subsets of X, under the proviso that their complements,
consisting of non-singular (regular) points, are also dense in X. In case
X is a Euclidean space or a finite-dimensional manifold, the cardinality
of the set of singular points may be larger than that of the regular ones.
For instance, when one takes X = R (as we intuit to do here with Lt ), the
dense singular subsets of it may have the cardinal of the continuum—i.e.,
the singularities are situated on the irrational numbers, while the regular
ones are also dense but countable in R and situated, say, on the rationales.

• Second, their situation in the manifold’s bulk. As it is evident from the
above, the dense singularities, apart from their uncountable multiplicity,
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are not situated merely at the boundary of the underlying (topological)
space(time) (manifold), but occupy ‘central’ points in its ‘bulk-interior.’
This is in striking contrast to the usual theory of C∞-smooth spacetime
singularities that we briefly revisited in Section 2 (Hawking and Ellis, 1973;
Clarke, 1986, 1993; Rendall, 2005), which we may thus coin ‘separated
and isolated,’ or ‘solitary,’ or even ‘spacetime marginal’ for effect. This
situation is also in contrast to the ‘algebraically generalized differential
spaces’ (:spacetime foam) approach to GR and QG of Heller et al., as they
too assume (even though they too tend to employ sheaf-theoretic methods)
that singularities—in fact, merely nowhere dense singularities (not dense
ones!) in the sense of Mallios and Rosinger (1999)—sit right at the edge of
the spacetime manifold (see Heller (1991, 1992, 1993); Heller and Sasin
(1993, 1995a,b); Heller et al. (1989), and especially Gruszczak and Heller
(1993)).

• And third, as briefly alluded to above, the differential algebras of gener-
alized functions in Rosinger’s non-linear distribution theory contain both
the usual algebra C∞(X) of smooth functions and Schwartz’s linear dis-
tributions (Mallios and Rosinger, 2001, 2002). Furthermore, these non-
linear distributions, either with nowhere dense, or even more prominently,
with dense singularities, have proven to be more versatile (and potentially
more useful in differential geometric applications) than the, quite popular
lately in the theory of non-linear PDEs, non-linear Colombeau distributions
(Colombeau, 1984).66

5.5. Two Alternative Distributional ADG-Resolutions
of the Inner Schwarzschild Singularity

Like in the point-resolution presented above, here too we can evade by ADG-
theoretic means the interior Schwarzschild singularity, regarded as an extended
distributional (:SFS-like) spacetime foam dense singularity along Lt � R, in two
different ways—one ‘direct,’ the other ‘indirect’ and along the ‘finitary’ lines
of Sorkin. Let us briefly mention the two strategies, leaving the rather lengthy
technical details for Mallios and Raptis (2004).

• ‘Direct’ distributional evasion: Here, following Mallios (2001, 2002),
we can directly employ sheaves of Rosinger’s generalized functions host-
ing dense singularities on Lt as coordinate structure sheaves in the theory.
Then, we straightforwardly borrow the main result from Mallios (2001,
2002), namely, that Einstein’s equations hold over all Lt when Rosinger’s
spacetime foam sheaves are used as A. We call this strategy ‘direct,’

66 See Mallios and Rosinger (2001) for a discussion of the (differential geometric) virtues of Rosinger’s
distributions compared to Colombeau’s.
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because, like in the first ‘non-constructive’ point-resolution before which
evoked Papatriantafillou’s results and straightforwardly defined finitary

differential triads on the
Ui∼-moduli spaces Pi , one can directly define

spacetime foam differential triads without having to go ‘constructively,’ in
a roundabout way, via finitary coverings, finsheaves (of incidence algebras)
etc. The latter we can accomplish in the second possible strategy briefly
described next.

• ‘Indirect’ distributional evasion: Here, we combine the approach of
Mallios-Rosinger in Mallios and Rosinger (2001, 2002) with Sorkin’s
in Sorkin (1991) and let X ≡ I ⊂ Lt � R (I a bounded interval of the
real line as befits a physically realistic point-particle of finite lifetime) be
covered by locally finite ‘singularity-open coverings.’ These are cover-
ing families of open subsets of X containing singularities (of Rosinger’s
generalized functions) densely at their points. Then we go to finsheaves
(of incidence algebras) and the finitary differential triads picture thereof
so as to show that for each such covering the vacuum Einstein equations
hold à la (Mallios and Raptis, 2003) and (Mallios and Raptis, 2003), and
finally we pass to the classical ‘continuum’ projective limit of maximum
topological-cum-singularity refinement to show that the vacuum Einstein
equations hold over the whole (space)time—in particular, over all X. To
be precise, and in keeping with Sorkin’s inverse limit result mentioned ear-
lier, the vacuum Einstein equations can be seen to hold over all the densely
singular points of X—itself assumed to be populated with spacetime foam
dense singularities—when recovered as a dense subset of (closed points
of) the non-Hausdorff inverse limit space of Sorkin’s finitary substitutes
and the differential triads they support relative to the said locally finite
open singularity-covers.

6. EPILEGOMENA: IMPLICATIONS FOR QUANTUM GRAVITY

In this concluding section we remark briefly on two issues. First, how ADG
may prove to be a suitable theoretical framework in which to formulate a gen-
uinely background-independent QG. Also, since ADG appears to evade com-
pletely (gravitational) singularities (Mallios, 2001, 2003, 2002, 2005a,b; Mallios
and Raptis, 2004), we touch in its light on the nowadays general consensus (or
at least, the wishful expectation) that QG should resolve, or ultimately remove,
spacetime singularities (Hawking and Penrose, 1996; Penrose, 2003; Husain and
Winkler, 2004). In this context, we loosely compare the evasion of the interior
Schwarzschild singularity presented above with a similar resolution of it achieved
very recently by the methods and results of Loop QG (LQG) in Modesto (2004),
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making some relevant comments in the process. However, we leave a thorough
discussion of what follows to Mallios and Raptis (2004).

• Genuinely background-independent QG. A major issue in QG, especially
in non-perturbative canonical QGR (Thiemann, 2001) in its connection
based LQG version (Rovelli and Smolin, 1990; Thiemann, 2002; Smolin,
2004), is to formulate the theory in a genuinely background-independent
fashion (Alvarez, 2004). In a nutshell, by ‘background independence’ it
is meant ‘background metric independence.’ That is, unlike in the usual
(mainly perturbative) approaches to QG where one fixes a (usually flat,
Minkowski) background metric in order to formulate the quantum dynam-
ics (and expand the relevant quantities about it, as well as to impose physi-
cally meaningful commutation relations among them), here there is no such
desire since, anyway, it appears to be begging the question to fix a priori
(and by hand!), and moreover to duplicate, the supposedly sole dynamical
variable of GR—the spacetime geometry (metric). Ashtekar and cowork-
ers have succeeded over the years in formulating LQG in a manifestly
fixed background metric independent way (Ashtekar and Lewandowski,
2004). Alas, a smooth spacetime manifold is still retained in the back-
ground (Ashtekar, 2003)—or else, how could one still use differential
geometric ideas and constructions (Ashtekar and Lewandowski, 1995) in
QG research? For example, as noted earlier, the new connection variables
(Ashtekar, 1986) employed in LQG are smooth (spin-Lorentzian) connec-
tions based on a differential spacetime manifold, let alone that the smooth
metric is still implicitly present in the guise of the smooth comoving tetrad
(:vierbein) field variables (first-order formalism). All this is another in-
stance of the aforementioned base manifold and CDG-conservatism and
monopoly.

By contrast, in ADG GR is not only formulated, as befits a purely
gauge theory, solely in terms of the gravitational A-connection variable
without at all the presence of a metric (‘half-order formalism’), but also, a
fortiori, no base differential spacetime manifold appears at all in the theory.
In this sense, the ADG-approach to gravity—classical or quantum—is
genuinely background-independent (Mallios and Raptis, 2003, 2004). On
the other hand, it is plain that since singularities are inherent in C∞

M (i.e., in
the background differential spacetime manifold M), loop QG still has to
reckon with them—that is, they are still problems for the theory and thus
the theory still aims at resolving them somehow. We thus comment on a
recent resolution of the inner Schwarzschild singularity by LQG means
(Modesto, 2004) in the next paragraph, comparing it at the same time with
ours above.

• Comparison with a recent resolution of the inner Schwarzschild singular-
ity by LQG methods. As noted before, there is currently optimism among
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theoretical physicists that QG will shed more light and ultimately (re)solve
the problem of smooth spacetime singularities in GR. Notably, within the
past three years, in the context of Loop Quantum Cosmology it has been
shown that the initial (‘Big Bang’) singularity predicted by GR can be
indeed resolved (Bojowald, 2001a,b; Ashtekar et al., 2003; Husain and
Winkler, 2004). However, even more remarkable for the present paper is
the following very recent result of (Modesto, 2004), which was also arrived
at by LQG means: In one sentence, the Schwarzschild black hole singu-
larity of the classical theory (GR) ‘disappears’ in QG. In this penultimate
paragraph we would like to describe briefly this ‘disappearance,’ comment
on it and juxtapose it with the ‘resolution’ of the same singularity that we
achieved herein by ADG-theoretic means.

Let us first note that since, as mentioned before, LQG, although background
metric independent, still employs a base differential (spacetime) manifold for its
constructions, the problem of singularities in the classical theory persists and has
to be reckoned with in the quantum theory. In this regard, it is fair to say that
loop QG ‘expects’ that the ‘true’ quantum theory of gravity it aspires to be should
ultimately resolve or remove the singularities and the associated pathological
infinities of the classical theory (Husain and Winkler, 2004). Briefly, in Modesto
(2004) the interior Schwarzschild singularity appears to be resolved as follows:67

1. To begin with, one expresses the Ricci scalar curvature, which as noted
earlier blows up as 1/r6 near the interior (r = 0) Schwarzschild singular-
ity, in terms of the spacetime volume.

2. Then, one evokes the major result in LQG, namely, that the said vol-
ume is quantized—i.e., it is promoted to a volume operator having a
discrete eigen-spectrum. Parenthetically, we mention that this volume-
quantization (Ashtekar and Lewandowski, 1997b) is just one of a series
of significant results in Ashtekar’s quantum (Riemannian) geometry pro-
gramme accompanying LQG (Ashtekar, 2003; Thiemann, 2001, 2002;
Smolin, 2004), along with the quantization of length (Thiemann, 1998)
and area (Ashtekar and Lewandowski, 1997a) (see also Rovelli and Smolin
(1995); Rovelli (2002)). Thus, near the Schwarzschild black hole, R is
rendered finite and the classical infinities are controlled (‘regularized’) by
quantum theory.

3. Moreover, one can show that the said ‘regularization’ is not ‘kinemat-
ical’ and without physical significance—one that is a priori fixed by
hand like for example the space(time) discretizations in lattice QCD—but
it is a dynamical one. This is so because the Hamiltonian (constraint),
which regulates the dynamical time-evolution in the canonical approach

67 The reader is referred to Modesto (2004) for detailed arguments, calculations and pertinent citations.
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to GR classically underlying LQG (Thiemann, 2001, 2002), can also be
expressed in terms of the volume operator. Thus, as Modesto shows, the
spacetime can be dynamically extended past the interior Schwarzschild
singularity, with no infinity involved at all.

4. On the other hand, from a differential geometric viewpoint, the upshot
of all this is that the said dynamical evolution, which is classically rep-
resented by a differential equation on the spacetime continuum,68 is now
substituted, in view of the said quantization of spacetime geometry in
LQG, by a ‘discrete,’ difference equation (discretely parameterized by the
coefficients of the physical quantum eigenstates of the volume operator—
in a quantum cosmological setting, see also Bojowald (2001b)). In summa,
one can say that the inner Schwarzschild singularity is resolved due to the
quantization of spacetime itself.

Based on the brief description above, our comparison of the two ‘resolutions’ of
the interior Schwarzschild singularity focuses on two fundamental in our opinion
differences:

I. Unlike in the LQG ‘resolution’ where a quantization of spacetime ap-
pears to be necessary, in the ADG ‘resolution’ this is not so, for the
theory is ‘intrinsically background spacetimeless.’ That is, the theory is
indifferent as to whether that background is a ‘classical continuum’ or
a ‘quantal discretum,’ since the dynamical Einstein equations hold both
at the ‘discrete-quantal’ (finitary) level and at the ‘continuous-classical’
(infinitary) one (Mallios and Raptis, 2003, 2004). In the ADG perspective
on gravity, where the sole dynamical variable is an algebraic connection
field D on a vector/agebra sheaf E (on an in principle arbitrary topological
space X), the quest for a quantization of spacetime is virtually begging
the question: in the first place, in ADG, what ‘spacetime’ is one talk-
ing about?. Another way to say this is that, from the ADG-viewpoint,
gravity (i.e., the dynamically autonomous gravitational field D defining
the Einstein equations via its curvature) has nothing to do with a back-
ground ‘space(time)’ (in our case, the background X which serves only
as a surrogate topological space for the sheaf-theoretic localization and
representation of the relevant sheaves; e.g., A, E , and D acting on it), so
that a possible quantum theory of the former is in no need of a quantum
description of the latter (Mallios and Raptis, 2002, 2003, 2004). As a
consequence of this difference.

II. Unlike in the loop QG ‘resolution’ where the said spacetime quantization
and concomitant discretization appears to necessitate the abandoning of

68 After all, the Hamiltonian (constraint) in the classical canonical theory (GR) is the generator of
time-diffeomorphisms.
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the picture of ‘gravitational dynamical evolution’ as a differential equation
proper (and, as a result, the abandonment of differential geometric ideas
in the quantum regime—e.g., see Isham quotation from Isham (1991) be-
fore), in the ADG ‘resolution’ all the differential geometric machinery (of
the background spacetime continuum) is retained in full effect (Mallios
and Raptis, 2002, 2003, 2004). Moreover, this is so manifestly indepen-
dently of that background, and a fortiori, even if that background is taken to
be a ‘discretum’ where differential geometric ideas would traditionally—
i.e., from the CDG-viewpoint of the continuous manifold—be expected
to fail to apply.
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